Self-Generative Singlet Oxygen (1O2)-Initiated Chemical Modification of Nuclear DNAs Combats Tumor Drug Resistance

化学 单线态氧 氧气 单重态 放射化学 有机化学 核物理学 激发态 物理
作者
Anna Wang,Yuqi Zhang,Yurong Fan,Zhongsheng Zhao,Zhengzhong Lv,Yirui Guo,Miao Li,Yan Chen,Lihua Hu,Danyang Ji,Xiaju Cheng,Haibin Shi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c02826
摘要

Multidrug resistance (MDR) is one of the major problems in cancer treatment. Overcoming MDR to achieve effective cancer treatment remains a huge challenge. Here, we proposed a self-generative singlet oxygen (1O2)-initiated chemical modification of nuclear DNAs (SiCMoND) approach to kill multidrug-resistant tumor synergizing with chemotherapy. A tumor-targeted "nano-bomb" FA(CT-fT-Dox) was rationally fabricated by encapsulating the complex of Cu2+ with tetrakis(4-carboxyphenyl) porphyrin) (Cu-TCPP) as a 1O2 generator and a doxorubicin (Dox) prodrug tailed with a furan-containing positively charged peptide (fTAT-Dox) within the micelles of FA-PEG5000-PCL3000 and mPEG5000-PCL3000. When FA(CT-fT-Dox) nanoparticles accumulated at the tumor site, they could undergo disassembly in the tumor microenvironment (TME) specifically to release Cu-TCPP and fTAT-Dox simultaneously. Taking advantage of the features of Cu-TCPP that can convert tumor-abundant H2O2 into 1O2 and fTAT-Dox that can readily penetrate the cell membrane into the nucleus, chemical modification of nuclear DNAs was realized through the covalent cyclization reaction between furan and nucleobases of nuclear DNAs under the ignition of self-generative 1O2, which leads to significant DNA damage and enhanced therapeutic susceptibility. More notably, the sustained release of Dox within the nucleus greatly inhibits DNA transcription and translation leading to severe cancer cell apoptosis. In vivo studies in a multidrug-resistant MCF-7/ADR tumor model showed that the antitumor efficacy of FA(CT-fT-Dox) was 1.6-fold higher than FA(CT-T-Dox) without DNA modification functionality with a tumor suppression efficiency of 83.3%. This SiCMoND-assisting chemotherapy strategy provides a promising antitumor therapeutic modality and opens new avenues for battling multidrug-resistant tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChuangyangLi发布了新的文献求助10
刚刚
深情安青应助刻苦的元菱采纳,获得10
1秒前
沉夏谷完成签到,获得积分10
2秒前
梅梅梅发布了新的文献求助10
4秒前
吕玥函发布了新的文献求助10
4秒前
香查朵完成签到,获得积分10
5秒前
啊哈哈完成签到 ,获得积分10
5秒前
Mollyshimmer完成签到 ,获得积分10
6秒前
FashionBoy应助等待的道消采纳,获得10
10秒前
天天快乐应助等待的道消采纳,获得10
10秒前
幽默龙猫完成签到,获得积分10
11秒前
12秒前
浮游应助沉静胜采纳,获得10
13秒前
14秒前
joker1043发布了新的文献求助10
14秒前
Zx_1993应助K123采纳,获得10
17秒前
ln发布了新的文献求助10
18秒前
万能图书馆应助伊雷霆采纳,获得10
18秒前
yukikaze发布了新的文献求助10
20秒前
20秒前
SciGPT应助我不知道该叫啥采纳,获得10
20秒前
21秒前
CodeCraft应助shi采纳,获得10
22秒前
瘦瘦凌丝完成签到 ,获得积分10
25秒前
25秒前
26秒前
北过完成签到,获得积分10
27秒前
29秒前
洁白的故人应助wangle_17采纳,获得10
29秒前
pp完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助酷bile采纳,获得10
32秒前
松子发布了新的文献求助10
34秒前
烤鱼片完成签到 ,获得积分10
35秒前
36秒前
miss完成签到,获得积分10
36秒前
ttxs001发布了新的文献求助30
37秒前
38秒前
bbnomulaa关注了科研通微信公众号
39秒前
39秒前
sanker完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4749219
求助须知:如何正确求助?哪些是违规求助? 4095680
关于积分的说明 12672239
捐赠科研通 3808050
什么是DOI,文献DOI怎么找? 2102318
邀请新用户注册赠送积分活动 1127564
关于科研通互助平台的介绍 1004095