材料科学
热电效应
塞贝克系数
化学工程
离子液体
聚合
聚合物
复合材料
高分子化学
有机化学
热导率
化学
热力学
物理
工程类
催化作用
作者
Wenchao Zhen,Chengshuai Lu,Duo Li,Guangfan Meng,Hong‐Qin Wang,Yifei Jiang,Jiang Lou,Wenjia Han
标识
DOI:10.1002/advs.202414389
摘要
Ionogels have emerged as promising candidates for low-grade thermal energy harvesting due to their leak-free electrolytes, exceptional flexibility, thermal stability, and high thermopower. While substantial progress in the thermoelectric performance of p-type ionogels, research on n-type ionic materials lags behind. Striking a harmonious balance between high mechanical performance and thermoelectric properties remains a formidable challenge. This work presents an advanced n-type ionogel system integrating polyethylene glycol diacrylate (PEGDA), hydroxyethyl methacrylate (HEMA), 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), and bacterial cellulose (BC) through a rational design strategy. The synergistic combination of photo-polymerization and hydrogen-bonding networks effectively immobilizes imidazolium cations while enabling rapid chloride ion transport, creating a pronounced cation-anion mobility disparity that yields a substantial negative ionic Seebeck coefficient of -7.16 mV K⁻¹. Furthermore, BC's abundant hydroxyl groups establish multivalent hydrogen bonds within the ternary polymer matrix, endowing the composite with exceptional mechanical properties-notably a tensile strength of 3.2 MPa and toughness of 4.1 MJ m⁻3. Moreover, the ionogel exhibits sensitive responses to stimuli such as pressure, strain, and temperature. The thermoelectric modules fabricated can harness body heat to illuminate a bulb, showcasing great potential for low-grade energy harvesting and ultra-sensitive sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI