Assessment of Movement Disorders in the Elderly Based on Skeletal Action Recognition

动作识别 动作(物理) 运动(音乐) 物理医学与康复 运动障碍 计算机科学 医学 人工智能 物理 内科学 声学 疾病 量子力学 班级(哲学)
作者
Yangwei Ying,Haotian Wang,Jun Liao,Yiwen Xing,Lina Ma,Hong Zhou
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 1437-1437
标识
DOI:10.3390/electronics14071437
摘要

With the global population aging, promoting healthy aging has become a critical societal objective. Movement disorders, which include age-related motor decline and neurodegenerative diseases such as Parkinson’s disease, significantly impair quality of life and impose substantial healthcare burdens. Early detection and intervention are crucial, yet current assessment methods primarily rely on subjective questionnaires and physical examinations, which are inefficient, resource-intensive, and lack standardization. To address these challenges, this study proposes a novel movement disorder assessment algorithm that leverages object detection, pose estimation, and action recognition techniques. By exploiting the differences in gait-related stability, coordination, and muscle activity between individuals with movement disorders and healthy individuals, the proposed algorithm employs a two-stage approach: (1) a keypoint extraction algorithm composed of the object detection algorithm and the pose estimation algorithm and (2) an improved action recognition algorithm based on the spatial–temporal graph convolutional network (ST-GCN), which incorporates a data-dependent adjacency matrix, multi-scale temporal window transformation, multimodal aggregation, and contrastive learning for precise classification. Experimental results show a 10.24% accuracy improvement over ST-GCN, achieving an accuracy of 82.03%. This method offers a more efficient, convenient, and scalable alternative to traditional approaches, providing a valuable foundation for intelligent elderly care and future research in movement disorder diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助哇哇哇www采纳,获得30
3秒前
领导范儿应助林读书采纳,获得10
4秒前
青山完成签到,获得积分10
4秒前
淡然从雪完成签到,获得积分10
7秒前
正直的友容完成签到,获得积分10
8秒前
脑洞疼应助yunjian1583采纳,获得10
8秒前
思源应助无聊的寒烟采纳,获得10
8秒前
Arya完成签到,获得积分10
8秒前
9秒前
9秒前
啦啦鱼完成签到 ,获得积分10
9秒前
peng发布了新的文献求助30
10秒前
尊敬亦寒完成签到,获得积分10
11秒前
zm发布了新的文献求助10
13秒前
14秒前
Logan完成签到,获得积分10
15秒前
带鱼的笔芯完成签到,获得积分20
15秒前
15秒前
emilybei发布了新的文献求助10
17秒前
科研通AI5应助自信羊采纳,获得10
17秒前
顾矜应助chichenglin采纳,获得10
17秒前
大模型应助aaao采纳,获得10
17秒前
Toàn完成签到,获得积分10
17秒前
Taro完成签到 ,获得积分10
18秒前
19秒前
sys完成签到,获得积分10
20秒前
愉快凌晴完成签到,获得积分10
20秒前
21秒前
21秒前
英姑应助甜蜜的灵凡采纳,获得10
24秒前
无私书雪完成签到,获得积分10
24秒前
Harries发布了新的文献求助10
24秒前
25秒前
28秒前
Ava应助杨咩咩采纳,获得10
28秒前
bofu发布了新的文献求助10
28秒前
28秒前
Oops发布了新的文献求助10
29秒前
31秒前
小卒关注了科研通微信公众号
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777