材料科学
硝酸盐
氨
原位
无机化学
电子
还原(数学)
核化学
化学
有机化学
物理
核物理学
几何学
数学
作者
Lanlan Yu,Jincheng Mu,Huiling Liu,Gang Liao,Boyi Li,Yufen Xia,Zhimin Wang,Jili Yuan,Jiachao Shen,Chengbin Liu
标识
DOI:10.1002/adfm.202424119
摘要
Abstract Electrocatalytic nitrate reduction into ammonia (NitRR) over Co‐based catalysts is attractive but still constrained by the competition with H* coupling to produce H 2 . Additionally, the fundamental mechanism underlying the interfacial engineering associated with electronic state transformation for strengthening oriented NitRR remains elusive. Herein, a Co(OH) 2 /Bi 12 O 17 Br 2 heterostructure is fabricated using a one‐step wet chemistry method, performing remarkable reactivity for NH 3 production own to the formation of electron‐deficiency Co sites induced by Bi 12 O 17 Br 2 . Unexpectedly, the NitRR activity of Co(OH) 2 /Bi 12 O 17 Br 2 increases gradually in the initial stage and then keeps at a high level, which is uncovered as the reconstruction of Bi 12 O 17 Br 2 into Bi 0 . Theoretical calculations suggest that the in situ reconstruction guides the electron‐deficiency of Co and the shift of d ‐band center of Co toward the Fermi level, thus promoting the adsorption and conversion of intermediates. The synergistic effect of the hydrolysis dissociation over Co(OH) 2 and the inhibition of H* coupling over Bi 0 contributes to high selectivity and activity for NitRR. The reconstructed catalyst shows a high ammonia yield rate of 7343.3 µg h −1 mg −1 at −0.6 V versus RHE and nearly 100% Faradaic efficiency at −0.4 V versus RHE. This study provides insight into the strengthening mechanism of Co‐based catalysts for NitRR.
科研通智能强力驱动
Strongly Powered by AbleSci AI