PI3K/AKT/mTOR通路
蛋白激酶B
去卵巢大鼠
骨质疏松症
骨重建
AKT1型
骨吸收
药理学
化学
信号转导
雌激素
内分泌学
内科学
医学
生物化学
作者
Chang‐Heng Tan,Shibo Cong,Yan‐Ming Xie,Ying-Jie Zhi
摘要
In the context of osteoporosis closely linked to bone metabolism imbalance caused by estrogen deficiency, total flavonoids of Rhizoma Drynariae (TFRD) exhibit potential anti-osteoporotic activity, yet their multicomponent synergistic mechanism and association with the PI3K/AKT signaling pathway remain unclear. This study aimed to systematically elucidate the molecular mechanisms by which TFRD regulate bone metabolism and improve osteoporosis in ovariectomized (OVX) rats through the PI3K/AKT pathway, integrating network pharmacological predictions with animal experimental validation. Methods involved identifying TFRD’s active components using UPLC/MS-MS, predicting targets with SwissTargetPrediction, constructing a “component-target-disease” network, and performing GO/KEGG enrichment analysis with MetaScape (v3.5). In vivo experiments established an OVX rat model, randomized into sham, OVX, low-/high-dose TFRD, and sim groups, assessing bone mineral density (BMD) and mandibular Micro-CT parameters after 12 weeks. Western blot analyzed PI3K, p-AKT1, and related protein expressions. Results showed the high-dose TFRD group significantly increased BMD, improved trabecular bone quantity and structure, and upregulated PI3K, p-PI3K, and p-AKT1 protein expressions compared to the OVX group. Molecular docking confirmed stable binding energy between core components and PI3K/AKT targets. TFRD may ameliorate estrogen deficiency-induced osteoporosis by activating the PI3K/AKT signaling pathway, inhibiting bone resorption, and promoting osteogenic differentiation, providing pharmacological evidence for multitarget treatment of osteoporosis with traditional Chinese medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI