Cascade-SORT: A robust fruit counting approach using multiple features cascade matching

人工智能 马氏距离 计算机视觉 级联 目标检测 计算机科学 模式识别(心理学) 卡尔曼滤波器 数学 色谱法 化学
作者
Leiying He,Fangdong Wu,Xiaoqiang Du,Shouxin Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107223-107223 被引量:17
标识
DOI:10.1016/j.compag.2022.107223
摘要

Estimation of fruit yield is of great importance to agricultural management and production decision-making. Fruit counting based on computer vision is faced with many challenges, particularly dense occlusion and difficult detection. To address the problems that exist in agricultural scenarios, we propose a fruit counting pipeline based on multiple features matching. Fruit counting is regarded as a multiple object tracking problem based on tracking-by-detection framework. The proposed method combines object detection with deep learning, Kalman filter, and cascade matching, which integrated motion and appearance features for frame-by-frame data association. Using the detection results of YOLO-v3, cascade matching is leveraged to associate detection bounding boxes with tracks. In cascade matching, the appearance features of fruit, Mahalanobis distance, and intersection over union metric were fused to match objects frame-by-frame. Mahalanobis distance is used to screen detection bounding boxes initially. Furthermore, the vector of locally aggregated descriptors image retrieval method is used to calculate the similarity of appearance between the two objects. In the final step of cascade matching, residual unmatched tracks and detection candidates are matched using intersection over union metric. Moreover, the Kalman filter is optimized for predicting the trajectories of undetectable objects to enhance the accuracy and robustness of fruit counting. In the experiments, the results of predicted fruit counting for camellia is 44 while the ground truth is 38 for a video. For apple counting, the total predicted number of fruits for three videos is 310 while the actual number is 292. And compared to the method of SORT, our method is better in counting accuracy, reduced the number of ID switches, and had more robustness when the detector performance degenerated. All the above mentioned metrics indicate that the proposed method is well performance in fruit counting regardless of whether the fruit is sparsely or densely grown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的冰棍儿完成签到 ,获得积分10
3秒前
3秒前
天天快乐应助我不是阿呆采纳,获得10
4秒前
5秒前
cloud完成签到,获得积分10
7秒前
冰冰凉凉彬彬完成签到,获得积分10
7秒前
科研通AI2S应助tdtk采纳,获得10
8秒前
豌豆发布了新的文献求助10
8秒前
affff完成签到 ,获得积分10
8秒前
9秒前
日出发布了新的文献求助10
10秒前
CDH完成签到,获得积分10
11秒前
奥里给完成签到 ,获得积分10
12秒前
核平铀善完成签到 ,获得积分10
12秒前
顾矜应助豌豆采纳,获得10
12秒前
斯文败类应助扒开皮皮采纳,获得10
12秒前
13秒前
慕青应助日出采纳,获得10
13秒前
pengchen完成签到 ,获得积分10
14秒前
科研通AI5应助小豆豆采纳,获得10
14秒前
moonlight发布了新的文献求助10
15秒前
az完成签到,获得积分10
18秒前
霍师傅发布了新的文献求助10
18秒前
酷酷海豚完成签到,获得积分10
18秒前
sh完成签到,获得积分10
19秒前
zhh关闭了zhh文献求助
22秒前
23秒前
calemolet应助爱撒娇的惋清采纳,获得10
24秒前
至拙发布了新的文献求助10
24秒前
27秒前
扒开皮皮发布了新的文献求助10
28秒前
Zhy完成签到,获得积分10
31秒前
小豆豆发布了新的文献求助10
32秒前
XC完成签到,获得积分10
35秒前
机灵曼青完成签到 ,获得积分10
36秒前
现代孤晴完成签到,获得积分10
37秒前
39秒前
916应助扒开皮皮采纳,获得10
39秒前
Owen应助扒开皮皮采纳,获得10
39秒前
情怀应助扒开皮皮采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339