From sequence to scaffold: Computational design of protein nanoparticle vaccines from AlphaFold2-predicted building blocks

作者
Cyrus M. Haas,Naveen Jasti,Annie Dosey,Joel D. Allen,Rebecca A. Gillespie,Jackson McGowan,Elizabeth M. Leaf,Max Crispin,Cole A. DeForest,Masaru Kanekiyo,Neil P. King
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (45): e2409566122-e2409566122
标识
DOI:10.1073/pnas.2409566122
摘要

Self-assembling protein nanoparticles are being increasingly utilized in the design of next-generation vaccines due to their ability to induce antibody responses of superior magnitude, breadth, and durability. Computational protein design offers a route to nanoparticle scaffolds with structural and biochemical features tailored to specific vaccine applications. Although strategies for designing self-assembling proteins have been established, the recent development of powerful machine learning (ML)–based tools for protein structure prediction and design provides an opportunity to overcome several of their limitations. Here, we leveraged these tools to develop a generalizable method for designing self-assembling proteins starting from AlphaFold2 predictions of oligomeric protein building blocks. We used the method to generate six 60-subunit protein nanoparticles with icosahedral symmetry, and single-particle cryoelectron microscopy reconstructions of three of them revealed that they were designed with atomic-level accuracy. To transform one of these nanoparticles into a functional immunogen, we reoriented its termini through circular permutation, added a genetically encoded oligomannose-type glycan, and displayed a stabilized trimeric variant of the influenza hemagglutinin receptor-binding domain through a rigid de novo linker. The resultant immunogen elicited potent receptor-blocking and neutralizing antibody responses in mice. Our results demonstrate the practical utility of ML–based protein modeling tools in the design of nanoparticle vaccines. More broadly, by eliminating the requirement for experimentally determined structures of protein building blocks, our method dramatically expands the number of starting points available for designing self-assembling proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助黎怡萱采纳,获得10
2秒前
3秒前
Painkiller_发布了新的文献求助10
3秒前
4秒前
5秒前
赵坤煊完成签到 ,获得积分10
7秒前
8秒前
一道光发布了新的文献求助10
9秒前
9秒前
Changlu发布了新的文献求助10
9秒前
充电宝应助白兰雪花膏采纳,获得10
10秒前
10秒前
10秒前
喵喵发布了新的文献求助10
12秒前
yangliming发布了新的文献求助10
13秒前
14秒前
机智采枫完成签到 ,获得积分10
14秒前
空心菜公主完成签到 ,获得积分10
15秒前
TT完成签到 ,获得积分20
16秒前
充电宝应助整齐晓筠采纳,获得10
17秒前
今后应助山城小辣椒采纳,获得10
17秒前
18秒前
哈哈哈哈哈哈完成签到,获得积分10
19秒前
kiki0808完成签到 ,获得积分10
20秒前
aurorazhao完成签到 ,获得积分10
21秒前
宇宙无敌霸王龙战士一号完成签到,获得积分10
22秒前
22秒前
23秒前
冷酷芝完成签到,获得积分10
26秒前
汉堡包应助浮云521采纳,获得10
27秒前
27秒前
上官若男应助TT采纳,获得10
30秒前
31秒前
yml发布了新的文献求助10
32秒前
36秒前
shun完成签到,获得积分10
36秒前
37秒前
陈小桥完成签到,获得积分10
38秒前
上官若男应助JuntaoLi采纳,获得10
38秒前
梦开始完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306363
求助须知:如何正确求助?哪些是违规求助? 4452212
关于积分的说明 13854048
捐赠科研通 4339659
什么是DOI,文献DOI怎么找? 2382796
邀请新用户注册赠送积分活动 1377669
关于科研通互助平台的介绍 1345320