Classification Prediction of Natural Gas Pipeline Leakage Faults Based on Deep Learning: Employing a Lightweight CNN with Attention Mechanisms

作者
Zhi Chen,Zhifeng Gu,Long Qin,Hongfu Mi,Changlin Zhou,Haoliang Zhang,Xiang Feng,Tao Song,Ke Wu,Xin Wang,Shuo Wang
出处
期刊:Processes [MDPI AG]
卷期号:13 (11): 3454-3454
标识
DOI:10.3390/pr13113454
摘要

The integrity of natural gas pipelines will decrease with an increase in operating time, thus causing pipeline leaks and accidents. However, it is challenging to improve the precision and automation of existing sensors to raise leak prediction and classification precision. Therefore, based on deep learning, a 1D convolutional neural network (CNN) incorporating the channel attention mechanism is proposed for recognizing and classifying the type of natural gas pipeline leakage. Firstly, the data reconstruction of the leaked acoustic signals, which have been classified by energy modes, is performed by feature augmentation and Bessel filtering. Subsequently, a lightweight CNN is proposed, and an attention mechanism is introduced to optimize the model performance. The results show that the training performance of the network with the attention mechanism is superior to that of the original network and the network with batch normalization. The attention mechanism network is then used to train the leakage signals with different features of engineering parameters. Finally, the test accuracy achieves 97.81%, validating the effectiveness of the proposed method for identifying and classifying natural gas leaks. It presents new ideas for the implementation of deep learning in the natural gas and chemical industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
好心态使欣欣幸福一生完成签到,获得积分20
1秒前
1秒前
彭于晏应助彪壮的绮烟采纳,获得10
2秒前
trap完成签到,获得积分10
2秒前
浮游应助mmmy采纳,获得10
3秒前
瓜瓜瓜完成签到 ,获得积分10
3秒前
春春发布了新的文献求助10
4秒前
柚子苏完成签到,获得积分10
4秒前
5秒前
Hello应助晚风采纳,获得10
5秒前
青春发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
科研通AI6应助ljydhr采纳,获得10
8秒前
朱登昶完成签到,获得积分10
8秒前
可爱的函函应助欧皇采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
搜集达人应助下一个雨季采纳,获得10
10秒前
椰子水发布了新的文献求助10
11秒前
靎藥完成签到,获得积分10
11秒前
11秒前
贝贝完成签到,获得积分10
11秒前
天气一级棒完成签到,获得积分10
11秒前
传奇3应助李小胖采纳,获得10
11秒前
lalala完成签到 ,获得积分20
12秒前
12秒前
14秒前
wxt发布了新的文献求助10
14秒前
14秒前
搜集达人应助美好的千凝采纳,获得10
15秒前
15秒前
大模型应助苏苏采纳,获得10
15秒前
纪汶欣完成签到 ,获得积分10
15秒前
典雅碧空发布了新的文献求助20
16秒前
TTK发布了新的文献求助10
17秒前
潇洒的翠丝完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495477
求助须知:如何正确求助?哪些是违规求助? 4593110
关于积分的说明 14439988
捐赠科研通 4525934
什么是DOI,文献DOI怎么找? 2479795
邀请新用户注册赠送积分活动 1464594
关于科研通互助平台的介绍 1437441