Ultrasound Radiomics‐Based Logistic Regression Model to Differentiate Between Benign and Malignant Breast Nodules

医学 逻辑回归 接收机工作特性 超声波 放射科 无线电技术 校准 人工智能 统计 计算机科学 数学 内科学
作者
Shanshan Shi,Xin An,Yuhong Li
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (4): 869-879 被引量:16
标识
DOI:10.1002/jum.16078
摘要

Objectives To explore the potential value of ultrasound radiomics in differentiating between benign and malignant breast nodules by extracting the radiomic features of two‐dimensional (2D) grayscale ultrasound images and establishing a logistic regression model. Methods The clinical and ultrasound data of 1000 female patients (500 pathologically benign patients, 500 pathologically malignant patients) who underwent breast ultrasound examinations at our hospital were retrospectively analyzed. The cases were randomly divided into training and validation sets at a ratio of 7:3. Once the region of interest (ROI) of the lesion was manually contoured, Spearman's rank correlation, least absolute shrinkage and selection operator (LASSO) regression, and the Boruta algorithm were adopted to determine optimal features and establish a logistic regression classification model. The performance of the model was assessed using the area under the receiver operating characteristic curve (AUC), and calibration and decision curves (DCA). Results Eight ultrasound radiomic features were selected to establish the model. The AUC values of the model were 0.979 and 0.977 in the training and validation sets, respectively ( P = .0029), indicating good discriminative ability in both datasets. Additionally, the calibration and DCA suggested that the model's calibration efficiency and clinical application value were both superior. Conclusions The proposed logistic regression model based on 2D grayscale ultrasound images could facilitate differential diagnosis of benign and malignant breast nodules. The model, which was constructed using ultrasound radiomic features identified in this study, demonstrated good diagnostic performance and could be useful in helping clinicians formulate individualized treatment plans for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷天寿发布了新的文献求助20
刚刚
cherish发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
白金之星发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
3秒前
林lin完成签到,获得积分10
4秒前
5秒前
花花发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
xiongwenlei完成签到,获得积分10
7秒前
谢大喵发布了新的文献求助30
7秒前
林lin发布了新的文献求助10
7秒前
zzszy发布了新的文献求助10
7秒前
所所应助JamesYang采纳,获得10
8秒前
SciGPT应助JamesYang采纳,获得10
8秒前
SciGPT应助JamesYang采纳,获得10
8秒前
Owen应助JamesYang采纳,获得10
8秒前
田様应助JamesYang采纳,获得10
8秒前
华仔应助JamesYang采纳,获得10
8秒前
思源应助JamesYang采纳,获得10
8秒前
今后应助JamesYang采纳,获得10
8秒前
丘比特应助JamesYang采纳,获得10
8秒前
8秒前
相传奇发布了新的文献求助10
8秒前
8秒前
在水一方应助CNYDNZB采纳,获得10
9秒前
10秒前
爆米花应助Zyc采纳,获得10
10秒前
英俊的铭应助海绵宝宝采纳,获得10
10秒前
jacob258发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
马依菲发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640