Deep learning for visual recognition and detection of aquatic animals: A review

水生生态系统 水产养殖 计算机科学 人工智能 水下 水生环境 目标检测 领域(数学) 机器学习 模式识别(心理学) 生态学 生物 渔业 地理 数学 考古 纯数学
作者
Juan Li,Wenkai Xu,Limiao Deng,Ying Xiao,Zhongzhi Han,Haiyong Zheng
出处
期刊:Reviews in Aquaculture [Wiley]
卷期号:15 (2): 409-433 被引量:49
标识
DOI:10.1111/raq.12726
摘要

Abstract The ocean is an important ecosystem, and aquatic animals play an important role in the biological world, especially in aquaculture. How to accurately and intelligently recognise and detect aquatic animals is one of the urgent problems in the field of underwater biological detection. The wide applications of artificial intelligence (AI), especially deep learning (DL), provide new opportunities and challenges for the efficient and intelligent exploration of aquatic animals. DL has been widely used in the visual recognition and detection of terrestrial animals, but it is in the early stages of use for aquatic animals due to the complexity of underwater environment and the difficulty of data acquisition. Here, this article reviews the current application status of DL for aquatic animals, potential challenges and future directions. The key advances of DL algorithms applied to the visual recognition and detection of aquatic animals are generalised, including datasets, algorithms and performance. The applications of DL are summarised in aquatic animals, including image detection, video detection, species classification, biomass estimation, behaviour analysis and food safety. Furthermore, the challenges are summed up and classified in the object recognition and detection domain for aquatic animals. Finally, further research direction is discussed and the conclusions are drawn. The key advances of DL in the recognition and detection of aquatic animals will help to further excavate and extend the application of DL in the field of marine biological exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮克斯完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
6秒前
qiao发布了新的文献求助20
8秒前
zz发布了新的文献求助10
10秒前
10秒前
10秒前
凉小远完成签到,获得积分10
11秒前
科研通AI5应助只只呀采纳,获得10
11秒前
含蓄半邪应助luca采纳,获得30
12秒前
13秒前
13秒前
1223发布了新的文献求助10
13秒前
Lxjie发布了新的文献求助10
13秒前
冷艳小刺猬完成签到 ,获得积分10
14秒前
cherish发布了新的文献求助10
15秒前
DavidXu发布了新的文献求助10
17秒前
橙子发布了新的文献求助10
18秒前
19秒前
ypppp发布了新的文献求助10
19秒前
阿泽发布了新的文献求助10
19秒前
20秒前
20秒前
不是一只杨完成签到,获得积分10
21秒前
乐观的颦发布了新的文献求助10
22秒前
怡然万声发布了新的文献求助10
23秒前
辣辣发布了新的文献求助10
25秒前
ypppp完成签到,获得积分10
25秒前
26秒前
Lxjie完成签到,获得积分10
28秒前
小马甲应助polarisblue采纳,获得10
28秒前
28秒前
大模型应助PigaChu采纳,获得10
29秒前
DavidXu完成签到,获得积分10
30秒前
阔达幼珊发布了新的文献求助10
32秒前
大模型应助無边采纳,获得10
33秒前
33秒前
CodeCraft应助呆萌的太阳采纳,获得10
37秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635