Compressive Sensing Strategy on Sparse Array to Accelerate Ultrasonic TFM Imaging

相控阵 压缩传感 超声波传感器 计算机科学 还原(数学) 电子工程 声学 工程类 算法 物理 电信 数学 几何学 天线(收音机)
作者
Lucas Pereira Piedade,Guillaume Painchaud-April,Alain Le Duff,Pierre Bélanger
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:70 (6): 538-550 被引量:7
标识
DOI:10.1109/tuffc.2023.3266719
摘要

Phased array ultrasonic testing (PAUT) based on full matrix capture (FMC) has recently been gaining popularity in the scientific and nondestructive testing communities. FMC is a versatile acquisition method that collects all the transmitter-receiver combinations from a given array. Furthermore, when postprocessing FMC data using the total focusing method (TFM), high-resolution images are achieved for defect characterization. Today, the combination of FMC and TFM is becoming more widely available in commercial ultrasonic phased array controllers. However, executing the FMC-TFM method is data-intensive, as the amount of data collected and processed is proportional to the square of the number of elements of the probe. This shortcoming may be overcome using a sparsely populated array in transmission followed by an efficient compression using compressive sensing (CS) approaches. The method can therefore lead to a massive reduction of data and hardware requirements and ultimately accelerate TFM imaging. In the present work, a CS methodology was applied to experimental data measured from samples containing artificial flaws. The results demonstrated that the proposed CS method allowed a reduction of up to 80% in the volume of data while achieving adequate FMC data recovery. Such results indicate the possibility of recovering experimental FMC signals using sampling rates under the Nyquist theorem limit. The TFM images obtained from the FMC, CS-FMC, and sparse CS approaches were compared in terms of contrast-to-noise ratio (CNR). It was seen that the CS-FMC combination produced images comparable to those acquitted using the FMC. Implementation of sparse arrays improved CS reconstruction times by up to 11 folds and reduced the firing events by approximately 90%. Moreover, image formation was accelerated by 6.6 times at the cost of only minor image quality degradation relative to the FMC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的盼秋完成签到,获得积分10
1秒前
3秒前
chi完成签到 ,获得积分10
4秒前
爱撒娇的板栗完成签到,获得积分20
7秒前
8秒前
情怀应助风趣的傲之采纳,获得10
9秒前
YJY完成签到,获得积分10
9秒前
李爱国应助科研通管家采纳,获得10
10秒前
echo完成签到 ,获得积分10
11秒前
啊饭完成签到,获得积分10
11秒前
你帅你有理完成签到,获得积分10
12秒前
728完成签到,获得积分10
13秒前
14秒前
郭红燕完成签到,获得积分10
14秒前
111111完成签到,获得积分10
16秒前
Wsyyy完成签到 ,获得积分10
16秒前
加减乘除完成签到,获得积分10
18秒前
束玲玲完成签到,获得积分10
18秒前
Rondab应助chenchen978采纳,获得10
21秒前
思源应助111111采纳,获得10
21秒前
小王完成签到 ,获得积分10
22秒前
潇潇声韵完成签到,获得积分10
23秒前
七岁完成签到,获得积分10
24秒前
青衣北风完成签到,获得积分10
25秒前
跑山猪完成签到,获得积分10
25秒前
g7001完成签到,获得积分10
26秒前
DT完成签到,获得积分10
28秒前
虾仁猪心完成签到,获得积分10
31秒前
gzgljh完成签到,获得积分10
32秒前
iNk应助daheeeee采纳,获得20
32秒前
Fiee完成签到,获得积分10
34秒前
zzzzzzzz应助简简单单采纳,获得10
37秒前
37秒前
小方汪汪汪完成签到,获得积分10
37秒前
yycc完成签到,获得积分10
37秒前
田田田田完成签到,获得积分10
38秒前
吕嫣娆完成签到 ,获得积分10
38秒前
务实完成签到 ,获得积分10
38秒前
介于两石之间完成签到,获得积分10
40秒前
想不出昵称完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4001511
求助须知:如何正确求助?哪些是违规求助? 3540922
关于积分的说明 11278823
捐赠科研通 3278733
什么是DOI,文献DOI怎么找? 1808181
邀请新用户注册赠送积分活动 884376
科研通“疑难数据库(出版商)”最低求助积分说明 810291