已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human–AI collaboration for green knowledge ecosystems in green supply chains – an empirical study on driving factors and psychological barriers

期望理论 结构方程建模 知识管理 心理学 业务 社会心理学 计算机科学 机器学习
作者
Yong Ye,Ping‐Kuo Chen,Ming‐Hui Wen
出处
期刊:Journal of Knowledge Management [Emerald Publishing Limited]
标识
DOI:10.1108/jkm-12-2024-1529
摘要

Purpose This study aims to investigate the driving factors that enhance the willingness to adopt Human–AI collaboration in green supply chains and examines the impact of psychological barriers on the transition from collaboration intentions to behavioral expectations. Design/methodology/approach A theoretical framework grounded in the Unified Theory of Acceptance and Use of Technology and the Uncanny Valley theory was empirically tested using survey data collected from Chinese manufacturing firms. A total of 467 valid responses were obtained across two independent samples collected at different time points. This dual-sample design captures perspectives from distinct groups and periods, providing broader insights into the proposed relationships. Partial Least Squares Structural Equation Modeling (PLS-SEM) was employed to examine the theoretical framework. Findings The results show that performance expectancy, social influence and facilitating conditions significantly drive collaboration intentions, which, in turn, positively influence behavioral expectations. While emotion-driven digital trust conflicts showed no significant impact, societal fears remain a key barrier. Specifically, concerns over AI replacing human roles hinder the translation of intentions into behavioral expectations. Originality/value In addition to the identified driving factors, findings of this study emphasize the importance of addressing societal fears to ensure that Human–AI collaboration fosters a self-sustaining ecosystem, enabling continuous innovation in green knowledge generation and sustainable pollution control within green supply chains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助ina采纳,获得30
3秒前
狸猫不礼貌完成签到,获得积分10
4秒前
zsp完成签到,获得积分10
5秒前
DanSlobin完成签到,获得积分10
6秒前
优秀谷波发布了新的文献求助10
7秒前
可靠的寒风完成签到,获得积分10
9秒前
50g完成签到,获得积分20
9秒前
10秒前
10秒前
123完成签到,获得积分10
11秒前
13秒前
13秒前
ZJX应助米酒汤圆采纳,获得10
14秒前
灵犀发布了新的文献求助10
14秒前
余念安完成签到 ,获得积分10
15秒前
Orange应助冰冰采纳,获得10
15秒前
章鱼完成签到,获得积分10
15秒前
15秒前
orixero应助dild采纳,获得10
15秒前
16秒前
16秒前
16秒前
幽默夜阑发布了新的文献求助10
16秒前
成就若颜发布了新的文献求助10
17秒前
19秒前
科研小秦发布了新的文献求助10
19秒前
团子发布了新的文献求助10
22秒前
22秒前
Fiona发布了新的文献求助10
22秒前
喜庆完成签到 ,获得积分10
24秒前
RCRCRC1995发布了新的文献求助10
24秒前
25秒前
科研通AI6应助ws采纳,获得10
26秒前
馆长完成签到,获得积分0
27秒前
小马甲应助ll采纳,获得10
28秒前
28秒前
王槿发布了新的文献求助10
30秒前
gyhh发布了新的文献求助10
30秒前
端庄的曼云完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396