Progressive Critical Region Transfer for Cross-Domain Visual Object Detection

计算机科学 领域(数学分析) 人工智能 计算机视觉 目标检测 对象(语法) 传输(计算) 模式识别(心理学) 数学 数学分析 并行计算
作者
Xiaowei Wang,Peiwen Jiang,Yang Li,Manjiang Hu,Ming Gao,Dongpu Cao,Rongjun Ding
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9427-9441
标识
DOI:10.1109/tits.2024.3382841
摘要

Well-trained visual object detectors are generally confronted with a severe performance decline when deployed in a novel driving scenario due to the impact of domain shift. Despite excellent improvements in unsupervised domain adaptive object detection achieved by adversarial training, those approaches fail to capture the transfer core underlying the holistic scenes. To solve this problem, we propose a progressive critical region transfer framework for cross-domain visual object detection. Specifically, we exploit a potential foreground mining (PFM) module and a semantic-specific RoI aggregation (SRA) module to improve the robustness of the cross-domain detection framework. Upon the critical regions in the broad sense, the PFM module first highlights the foreground regions by reweighting the hierarchical feature maps in sequence, and then modifies location biases at the downstream position of the backbone network for more accurate upstream predictions. Deep into the critical regions in the narrow sense, the SRA module concentrates on establishing an appropriate matching between batch-wise RoIs and all semantic centers, and further strengthens the aggregation of cross-domain identical semantic with the complement of context references. Together these modules are obligated to transform the adaptation importance from the whole scope to the latent foreground areas, and afterward to the informative regions of interest along the detection pipeline. Experiments show that our progressive critical region transfer framework achieves a state-of-the-art performance in adverse weather, camera configuration, and complicated scene adaptation, which outperforms the baselines by 19.4%, 5.0%, and 6.1%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
任性迎南完成签到,获得积分10
2秒前
Dejavu完成签到 ,获得积分10
2秒前
陈昊发布了新的文献求助10
3秒前
毅诚菌完成签到,获得积分10
3秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
鱿小鱼发布了新的文献求助10
8秒前
迷人啤酒完成签到,获得积分10
8秒前
轻声看雨发布了新的文献求助10
8秒前
wefor完成签到 ,获得积分10
8秒前
黄黄完成签到,获得积分0
9秒前
875728314完成签到,获得积分10
9秒前
yuki完成签到 ,获得积分10
10秒前
orixero应助艾云欣采纳,获得10
10秒前
凤凰涅槃发布了新的文献求助10
11秒前
Dejavu发布了新的文献求助10
11秒前
壮壮完成签到 ,获得积分10
11秒前
若雨凌风应助孙宇采纳,获得20
14秒前
紫丁香完成签到,获得积分20
16秒前
18秒前
曾经凤灵应助deng203采纳,获得10
18秒前
18秒前
li完成签到,获得积分10
19秒前
20秒前
艾云欣发布了新的文献求助10
21秒前
慕青应助双马尾小男生采纳,获得10
21秒前
小W完成签到 ,获得积分10
21秒前
爆米花应助Dennis采纳,获得10
21秒前
tonyhuang完成签到,获得积分10
21秒前
22秒前
23秒前
Joye发布了新的文献求助10
24秒前
yls发布了新的文献求助10
26秒前
无花果应助saeda采纳,获得30
26秒前
zzuwxj发布了新的文献求助10
26秒前
26秒前
科研通AI5应助Wunier61采纳,获得10
27秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825251
求助须知:如何正确求助?哪些是违规求助? 3367521
关于积分的说明 10446344
捐赠科研通 3086892
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937