Modality-aware Heterogeneous Graph for Joint Video Moment Retrieval and Highlight Detection

计算机科学 接头(建筑物) 人工智能 图形 计算机视觉 力矩(物理) 理论计算机科学 建筑工程 物理 经典力学 工程类
作者
Ruomei Wang,Jiawei Feng,Fuwei Zhang,Xiaonan Luo,Yuanmao Luo
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (9): 8896-8911
标识
DOI:10.1109/tcsvt.2024.3389024
摘要

The joint task of video moment retrieval and video highlight detection is a challenging study, which requires building a model that not only captures contextual information between sequences in time but also has the ability to understand and judge significance. This paper solves these problems from three aspects. Firstly, we design a parameter-free cross-modal statistical correlation interaction method. A novel saliency enhancement function is defined to quantify the saliency differences between the important features associated with the query and other features to achieve parameter-free cross-modal fusion. Secondly, we propose a novel modality-aware heterogeneous graph reasoning mechanism (MHGR). MHGR can effectively capture the global context information between sequences, enhance the local association relationship between sequences, and deal with the complexity of multi-modal data better through the organic combination of two key modules: parameter-free cross-modal statistical correlation interaction, and heterogeneous graph reasoning mechanism. Thirdly, a lightweight solution for the joint task of video moment retrieval and highlight detection is designed based on the above two novel algorithm modules. Comprehensive experiments are conducted on publicly available benchmark data to validate the advantages of the new solution in comparison with a series of state-of-the-art peer methods. Quantitative results consistently demonstrate that the new solution is lightweight and has high inference performance so the remarkable improvement in accuracy achieved by the new solution with respect to peer methods. An extended ablation study is further conducted to show the usefulness of each module of the solution in acquiring its computational capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
残幻应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得20
刚刚
MXene应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助板凳采纳,获得10
2秒前
bkagyin应助玄叶采纳,获得10
2秒前
温柔寄文完成签到 ,获得积分10
2秒前
万能图书馆应助LuoJiajun采纳,获得10
4秒前
微微完成签到,获得积分10
4秒前
6秒前
6秒前
9秒前
领导范儿应助逸兴遄飞采纳,获得10
11秒前
科研通AI5应助silong采纳,获得10
13秒前
俏皮小小发布了新的文献求助10
13秒前
14秒前
热情的夏完成签到,获得积分10
14秒前
suyou完成签到 ,获得积分10
15秒前
玄叶发布了新的文献求助10
15秒前
shizy完成签到,获得积分10
18秒前
俏皮小小完成签到,获得积分10
20秒前
21秒前
充电宝应助shizy采纳,获得10
23秒前
25秒前
27秒前
evidence完成签到,获得积分10
27秒前
28秒前
chelsea发布了新的文献求助10
31秒前
32秒前
山月发布了新的文献求助10
32秒前
32秒前
安陌煜完成签到,获得积分10
32秒前
然然发布了新的文献求助10
34秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842773
求助须知:如何正确求助?哪些是违规求助? 3384782
关于积分的说明 10537332
捐赠科研通 3105356
什么是DOI,文献DOI怎么找? 1710232
邀请新用户注册赠送积分活动 823561
科研通“疑难数据库(出版商)”最低求助积分说明 774137