Tail-STEAK: Improve Friend Recommendation for Tail Users via Self-Training Enhanced Knowledge Distillation

培训(气象学) 蒸馏 计算机科学 心理学 化学 色谱法 物理 气象学
作者
Yubo Ma,Chaozhuo Li,Zhou Xiao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8895-8903
标识
DOI:10.1609/aaai.v38i8.28737
摘要

Graph neural networks (GNNs) are commonly employed in collaborative friend recommendation systems. Nevertheless, recent studies reveal a notable performance gap, particularly for users with limited connections, commonly known as tail users, in contrast to their counterparts with abundant connections (head users). Uniformly treating head and tail users poses two challenges for tail user preference learning: (C1) Label Sparsity, as tail users typically possess limited labels; and (C2) Neighborhood Sparsity, where tail users exhibit sparse observable friendships, leading to distinct preference distributions and performance degradation compared to head users. In response to these challenges, we introduce Tail-STEAK, an innovative framework that combines self-training with enhanced knowledge distillation for tail user representation learning. To address(C1), we present Tail-STEAK-base, a two-stage self-training framework. In the first stage, only head users and their accurate connections are utilized for training, while pseudo links are generated for tail users in the second stage. To tackle (C2), we propose two data augmentation-based self-knowledge distillation pretext tasks. These tasks are seamlessly integrated into different stages of Tail-STEAK-base, culminating in the comprehensive Tail-STEAK framework. Extensive experiments, conducted on state-of-the-art GNN-based friend recommendation models, substantiate the efficacy of Tail-STEAK in significantly improving tail user performance. Our code and data are publicly available at https://github.com/antman9914/Tail-STEAK.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyantong666完成签到,获得积分10
刚刚
迅速友容完成签到 ,获得积分10
1秒前
阳光的薯片关注了科研通微信公众号
1秒前
ssx完成签到 ,获得积分10
1秒前
1秒前
bhappy21完成签到,获得积分10
1秒前
小二郎应助吴辰阳采纳,获得10
2秒前
2秒前
2秒前
万能图书馆应助TCC采纳,获得10
2秒前
牛人发布了新的文献求助10
3秒前
随堂测验关注了科研通微信公众号
3秒前
小马甲应助隐形的傲易采纳,获得10
3秒前
柒月完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
QQ发布了新的文献求助30
4秒前
5秒前
5秒前
认真的灵竹完成签到 ,获得积分10
5秒前
沉静的代芹完成签到,获得积分10
6秒前
pzh发布了新的文献求助10
6秒前
6秒前
乐乐应助安澜采纳,获得30
6秒前
pcykyt发布了新的文献求助10
6秒前
6秒前
852应助pjmwj采纳,获得10
7秒前
7秒前
Yue_David完成签到,获得积分10
7秒前
毛豆爸爸发布了新的文献求助10
7秒前
镜中男人完成签到,获得积分10
7秒前
tianliyan发布了新的文献求助10
8秒前
JOEEVE发布了新的文献求助10
9秒前
浅碎时光完成签到,获得积分10
9秒前
cc关注了科研通微信公众号
9秒前
9秒前
科研小崩豆完成签到,获得积分10
10秒前
10秒前
polysaccharide完成签到,获得积分20
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396