Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review

金属有机骨架 超级电容器 堆积 电化学能量转换 纳米技术 储能 纳米材料 制氢 氧化还原 能量转换 氢气储存 电化学 材料科学 催化作用 化学 电极 物理 热力学 吸附 有机化学 功率(物理) 生物化学 物理化学 量子力学 合金 复合材料 冶金
作者
Mohammad Ali Abdelkareem,Qaisar Abbas,Enas Taha Sayed,Nabila Shehata,Javad B. M. Parambath,Abdul Hai Alami,A.G. Olabi
出处
期刊:Energy [Elsevier BV]
卷期号:299: 131127-131127 被引量:42
标识
DOI:10.1016/j.energy.2024.131127
摘要

Metal-organic frameworks (MOFs) have enticed huge interest over the years in a wide range of applications, including electrochemical energy storage/conversion devices, due to their controllable porous structure, tuneable composition, excellent thermal/chemical stabilities, and facile synthesis. However, conductivity enhancement and synthesis of redox-active MOFs are two key challenges hindering their large-scale applications in electrochemistry. Redox-active MOFs can be prepared using redox-active ligands and metal ions, which in turn leads to an additional benefit of π-stacking interactions. Conductivity improvements through favourable overlap of energy and orientation of both metal and ligand, π-π stacking, and the incorporation of a guest molecule to induce free charge carriers and reduce band gaps are key strategies. This review provides a detailed assessment of various synthesis techniques followed by post-production treatments to improve MOF's conductivity. The use of MOFs and MOF-based nanomaterials in electrochemical devices, including batteries, supercapacitors, and fuel cells, as well as the progress in using MOF and MOF-based catalysts for CO2 reduction and as a photocatalyst for hydrogen production, have been scrutinized by highlighting their benefits and shortcomings. Finally, the challenges MOFs and MOF-based materials face and their prospects when adopted as active materials in energy storage/conversion devices, as well as CO2 reduction and green hydrogen production, have also been elaborated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻戒指发布了新的文献求助10
刚刚
亮晶晶发布了新的文献求助10
刚刚
1秒前
xiu发布了新的文献求助10
1秒前
1秒前
tjr8910发布了新的文献求助10
2秒前
追寻听云应助义气凝阳采纳,获得10
2秒前
dehailiang发布了新的文献求助10
2秒前
llly完成签到 ,获得积分10
3秒前
3秒前
大黄完成签到,获得积分10
3秒前
旗树树发布了新的文献求助10
3秒前
陶醉元冬完成签到,获得积分10
5秒前
5秒前
5秒前
kingwill举报求助违规成功
5秒前
镓氧锌钇铀举报求助违规成功
5秒前
wlscj举报求助违规成功
5秒前
5秒前
深情安青应助热情嘉懿采纳,获得10
5秒前
搜集达人应助单薄的雪旋采纳,获得20
6秒前
是真的发布了新的文献求助10
6秒前
Jasper应助魏欣雨采纳,获得10
6秒前
qi发布了新的文献求助10
6秒前
Owen应助热孜宛古丽采纳,获得10
6秒前
6秒前
段雁开应助早日暴富采纳,获得30
7秒前
7秒前
chemchen完成签到 ,获得积分10
7秒前
玛卡巴卡发布了新的文献求助10
7秒前
7秒前
科研通AI6应助EternalStrider采纳,获得10
8秒前
8秒前
灵光发布了新的文献求助10
9秒前
zzs发布了新的文献求助10
9秒前
9秒前
niania发布了新的文献求助30
9秒前
Amy完成签到 ,获得积分10
9秒前
崔大冠发布了新的文献求助10
10秒前
Jason完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624