Can Protein Structure Prediction Methods Capture Alternative Conformations of Membrane Transporters?

水准点(测量) 集合(抽象数据类型) 计算生物学 蛋白质结构 化学 数据集 计算机科学 共同进化 人工智能 生物化学 生物 进化生物学 大地测量学 程序设计语言 地理
作者
Tengyu Xie,Jing Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (8): 3524-3536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01936
摘要

Understanding the conformational dynamics of proteins, such as the inward-facing (IF) and outward-facing (OF) transition observed in transporters, is vital for elucidating their functional mechanisms. Despite significant advances in protein structure prediction (PSP) over the past three decades, most efforts have been focused on single-state prediction, leaving multistate or alternative conformation prediction (ACP) relatively unexplored. This discrepancy has led to the development of highly accurate PSP methods such as AlphaFold, yet their capabilities for ACP remain limited. To investigate the performance of current PSP methods in ACP, we curated a data set, named IOMemP, consisting of 32 experimentally determined high-resolution IF and OF structures of 16 membrane proteins with substantial conformational changes. We benchmarked 12 representative PSP methods, along with two recent multistate methods based on AlphaFold, against this data set. Our findings reveal a remarkably consistent preference for specific states across various PSP methods. We elucidated how coevolution information in MSAs influences state preference. Moreover, we showed that AlphaFold, when excluding coevolution information, estimated similar energies between the experimental IF and OF conformations, indicating that the energy model learned by AlphaFold is not biased toward any particular state. Our IOMemP data set and benchmark results are anticipated to advance the development of robust ACP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰美景发布了新的文献求助10
刚刚
狂野的天薇完成签到,获得积分10
刚刚
1秒前
娜行完成签到 ,获得积分10
2秒前
帅气的宽发布了新的文献求助10
2秒前
4秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
5秒前
ww960517完成签到,获得积分10
7秒前
田様应助七月江城采纳,获得10
8秒前
8秒前
9秒前
SciGPT应助瑞曦采纳,获得10
12秒前
12秒前
12秒前
眼睛大忆曼完成签到,获得积分10
14秒前
飘雪|夜兔完成签到,获得积分10
14秒前
zzyh完成签到,获得积分10
14秒前
小晖晖完成签到,获得积分10
15秒前
16秒前
yuki发布了新的文献求助30
16秒前
qiulong发布了新的文献求助10
18秒前
学术芽完成签到,获得积分10
19秒前
猪猪hero应助张梦阳采纳,获得10
19秒前
Unicorn完成签到 ,获得积分10
19秒前
20秒前
yanyuqing发布了新的文献求助10
21秒前
001完成签到,获得积分20
23秒前
田様应助zlk采纳,获得10
23秒前
咲韶完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
26秒前
积极的尔岚完成签到,获得积分10
28秒前
yuki完成签到,获得积分10
28秒前
six完成签到,获得积分10
29秒前
情怀应助正直的夏真采纳,获得10
30秒前
坦率短靴发布了新的文献求助10
30秒前
苦瓜大王发布了新的文献求助10
31秒前
zakarya发布了新的文献求助10
32秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451