检出限
石墨烯
材料科学
哑铃
环介导等温扩增
适体
纳米技术
生物物理学
分子生物学
化学
生物
生物化学
色谱法
生理学
DNA
作者
Jie Zhou,Yiwen Sun,Jin Zhang,Fusui Luo,Huili Ma,Min Guan,Junfen Feng,Xiaomeng Dong
标识
DOI:10.1021/acsami.2c21379
摘要
Finding a timely, sensitive, and noninvasive detection method has become an urgent need for asymptomatic early diagnosis of Alzheimer's disease (AD). MicroRNA-193b (miR-193b) and Aβ42 oligomers (AβO42) in neurogenic exosomes were confirmed to reflect pathological changes in the AD early stage. The combination of two biomarkers is promising for the earlier detection of AD. In this study, a detection system based on the principle of the entropy-driven strand displacement reaction (ESDR) was developed, including a dumbbell detection probe (H), an indicator probe (R), and graphene oxide (GO). In the detection system, the two hairpins of H were opened by the interaction of miR-193b (T1) and AβO42 (T2) with the aptamer. Then R hybridized with H and began to displace T, initiating the next round of ESDR to achieve sensitive detection of T. GO specifically adsorbed free R and quenched the fluorescence, further reducing the intensity of the background signal. Both of these points provided the system with a more sensitive analytical performance. The detection limit of miR-193b was 77 pM and the detection limit of AβO42 was 53 pM. This sensor detected the change of "one increase (AβO42) and one decrease (miR-193b)" in the exosome sample. Additionally, results showed that this detection system could distinguish the model of early AD from the non-AD control, which was sufficient for earlier and more sensitive detection of AD. This strategy has strong specificity, high sensitivity, and easy operation, which provides broad prospects for the early diagnosis of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI