CBW-MSSANet: A CNN Framework With Compact Band Weighting and Multiscale Spatial Attention for Hyperspectral Image Change Detection

像素 高光谱成像 加权 计算机科学 人工智能 空间分析 比例(比率) 遥感 模式识别(心理学) 质心 计算机视觉 图像分辨率 地理 地图学 医学 放射科
作者
Xianfeng Ou,Liangzhen Liu,Bing Tu,Linbo Qing,Guoyun Zhang,Zifei Liang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-18 被引量:9
标识
DOI:10.1109/tgrs.2023.3263563
摘要

Change detection (CD), aims to detect the changing area of the same scene at different times, which is an important application of remote sensing images. As the key data source of CD, hyperspectral image (HSI) is widely used in CD technology because of its rich spectral-spatial information. However, how to mine the multi-level spatial information of dual-temporal hyperspectral images (HSIs) and focus on the features of the pixels to be classified individually remains a problem in the spatial attention mechanism (SAM). To make full use of the spectral-spatial information of HSIs, in this paper we propose a CNN framework with compact band weighting and multi-scale spatial attention (CBW-MSSANet) for HSI pixel-level CD. The main contributions of this article are as follows: 1) a new method of pseudo-label training sample selection based on k-means (KM) centroid distance is designed; 2) apply the compact band weighting (CBW) module to HSI CD to take full advantage of the spectral information of HSIs; 3) a multi-scale spatial attention (MSSA) module is developed for pixel-level CD, which can mine multi-level spatial information and pay more attention to the features of the pixels to be classified, and combine the spatial information of adjacent pixels to make it more conducive to pixel-level CD. Experimental results on four real HSI datasets demonstrated that the performance of MSSA surpasses the classical single-scale SAM, and CBW-MSSANet is superior to some representative CD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Dr.发布了新的文献求助10
1秒前
2秒前
eurus发布了新的文献求助10
3秒前
热心市民应助阳光的初瑶采纳,获得30
4秒前
一只猪发布了新的文献求助20
4秒前
小南完成签到,获得积分10
4秒前
丘比特应助wang5945采纳,获得10
5秒前
人谷完成签到 ,获得积分10
5秒前
科研小白发布了新的文献求助10
8秒前
顺利毕业完成签到,获得积分10
8秒前
Dr.完成签到,获得积分10
11秒前
皮皮龙OVO发布了新的文献求助10
13秒前
飞跃完成签到 ,获得积分10
15秒前
念与惜完成签到,获得积分10
16秒前
赵小红完成签到,获得积分10
16秒前
李爱国应助hyp7347采纳,获得10
16秒前
xuanxuan完成签到 ,获得积分10
16秒前
皮皮龙OVO完成签到,获得积分10
18秒前
小蘑菇应助MRM采纳,获得10
18秒前
小池同学完成签到,获得积分10
19秒前
忧伤的冰薇完成签到 ,获得积分10
21秒前
22秒前
一味地丶逞强完成签到,获得积分10
24秒前
shionn完成签到 ,获得积分10
24秒前
研研研发布了新的文献求助10
25秒前
MRM完成签到,获得积分10
28秒前
29秒前
小鱼完成签到,获得积分10
30秒前
上官若男应助blawxx采纳,获得10
30秒前
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445