Metal-decorated γ-graphyne as a drug transporting agent for the mercaptopurine chemotherapy drug: a DFT study

药品 石墨 化学 药理学 材料科学 组合化学 计算化学 医学 密度泛函理论
作者
Sreejith Pallikkara Chandrasekharan,Seetha Lakshmy,Gopal Sanyal,Nandakumar Kalarikkal,Ravi Trivedi,Brahmananda Chakraborty
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:25 (13): 9461-9471 被引量:7
标识
DOI:10.1039/d2cp05379a
摘要

In recent years, carbon-based two-dimensional (2D) materials have gained popularity as the carriers of various anticancer therapy drugs, which could reduce the crucial side effects by directly applying the drugs to the intended tumor cells. In this study, through first-principles density functional theory simulations, we have investigated the adsorption properties of a famous cancer chemotherapy drug called mercaptopurine (MC) on a 2D γ-graphyne (GYN) monolayer. Analyzing the geometric and electronic properties, we can summarize that the MC interaction with the pristine GYN is weak, with a small adsorption energy of -0.15 eV, which is too low for potential applications. Therefore, we have decorated the GYN monolayer with biocompatible metals such as Al, Ag, and Cu to trigger the adsorption capacity. The Al- and Cu-decorated GYN offered improved adsorption towards MC compared to the pristine case. The drug release from these metal-decorated systems was examined by creating an acidic environment. In addition, the desorption temperature of the drug from the system was also evaluated using ab initio molecular dynamics simulations. The calculations demonstrated that the Al-decorated GYN is a potential vehicle for MC drug delivery because of the favourable adsorption energy of -0.63 eV, charge transfer of 0.17e and desorption temperature above 270 K. The current research will stimulate the investigation of other low-dimensional carbon materials for drug-delivery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
斯文败类应助sherman采纳,获得10
2秒前
3秒前
如风随水发布了新的文献求助10
3秒前
3秒前
呆萌不正发布了新的文献求助10
3秒前
脑洞疼应助HPP123采纳,获得10
4秒前
斯文败类应助HPP123采纳,获得10
4秒前
Orange应助HPP123采纳,获得10
4秒前
研友_VZG7GZ应助HPP123采纳,获得10
4秒前
李健应助HPP123采纳,获得10
4秒前
充电宝应助HPP123采纳,获得10
4秒前
震震应助HPP123采纳,获得10
4秒前
Lucas应助HPP123采纳,获得10
4秒前
江峰应助HPP123采纳,获得10
4秒前
可爱的函函应助HPP123采纳,获得10
4秒前
5秒前
yu发布了新的文献求助10
6秒前
思源应助蜗牛撵大象采纳,获得10
6秒前
twwm发布了新的文献求助10
7秒前
研友_Z6k7B8发布了新的文献求助10
7秒前
7秒前
8秒前
xpf发布了新的文献求助10
8秒前
sube完成签到,获得积分10
10秒前
dingshukai1234完成签到,获得积分20
13秒前
15秒前
NexusExplorer应助HPP123采纳,获得10
18秒前
桐桐完成签到,获得积分0
19秒前
20秒前
22秒前
啊盘发布了新的文献求助10
22秒前
专一的白萱完成签到 ,获得积分10
22秒前
爱吃绿豆沙的热辣小妈完成签到 ,获得积分10
23秒前
小蘑菇应助霸气导师采纳,获得10
25秒前
研友_Z6k7B8完成签到,获得积分10
25秒前
zgt01发布了新的文献求助10
26秒前
图图应助风中的丝袜采纳,获得10
26秒前
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307