Application of multiplatform, multispectral remote sensors for mapping intertidal macroalgae: A comparative approach

潮间带 卫星图像 泡叶藻 多光谱图像 遥感 栖息地 航空影像 环境科学 生态学 地理 生物 藻类
作者
Thomas Rossiter,Thomas Furey,Tim McCarthy,Dagmar B. Stengel
出处
期刊:Aquatic Conservation-marine and Freshwater Ecosystems [Wiley]
卷期号:30 (8): 1595-1612 被引量:25
标识
DOI:10.1002/aqc.3357
摘要

Abstract Intertidal macroalgal communities are economically and ecologically important and, with a likely increase in anthropogenic pressures, there is need to evaluate and monitor these diverse habitats. Efforts to conserve and sustainably manage these habitats must be underpinned by accurate, cost‐effective, and efficient data collection methods. The high spatial and temporal resolution of unmanned aerial vehicles (UAVs), compared with satellites and aircraft, combined with the development of lightweight sensors, provides researchers with a valuable set of tools to research intertidal macroalgal communities. The ability of multispectral sensors, mounted on a satellite, an aircraft, and a UAV, to identify and accurately map the intertidal brown fucoid Ascophyllum nodosum (Fucales, Ochrophyta) at a site with a low species diversity of macroalgae were compared. Visual analysis confirmed that the spatial resolution of satellite imagery was too coarse to map intertidal macroalgae as it could not capture the fine spatial patterns of the macroalgal community. High‐resolution RGB (colour) imagery, taken during the aircraft and UAV surveys, was used to collect training and reference data through the visual identification and digital delineation of species. Classes were determined based on the level of taxonomic detail that could be observed, with higher levels of taxonomic detail observed in the UAV imagery over the aircraft imagery. Data from both were used to train a maximum‐likelihood classifier (MLC). The UAV imagery was able to more accurately classify a distinct A. nodosum class, along with other macroalgal and substratum classes (overall accuracy, OA, 92%), than the aerial imagery, which could only identify a lower taxonomic resolution of mixed A. nodosum and fucoid class, achieving a lower OA (78.9%). This study has demonstrated that in a coastal site with low macroalgal species diversity, and despite the spectral similarity of macroalgal species, UAV‐mounted multispectral sensors proved the most accurate for focused assessments of individual canopy‐forming species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心凡灵完成签到,获得积分10
2秒前
酷波er应助沈二采纳,获得10
2秒前
2秒前
yurenxiaojie发布了新的文献求助10
2秒前
上官若男应助佟鹭其采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
CAOHB发布了新的文献求助10
4秒前
科研通AI6.1应助ljy1111采纳,获得10
5秒前
6秒前
是真的发布了新的文献求助10
6秒前
希望完成签到 ,获得积分10
7秒前
ilmadf发布了新的文献求助10
8秒前
科研的狗完成签到,获得积分10
8秒前
8秒前
9秒前
汉堡包应助jhchen采纳,获得10
9秒前
嗷嗷待哺狼完成签到,获得积分10
9秒前
10秒前
轩哥发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
kian完成签到,获得积分10
12秒前
彭于晏应助13679127159采纳,获得10
12秒前
Linda完成签到,获得积分0
13秒前
Cheryl发布了新的文献求助10
13秒前
锣大炮完成签到,获得积分10
15秒前
zxq发布了新的文献求助10
15秒前
15秒前
15秒前
han发布了新的文献求助10
15秒前
qwerty123456发布了新的文献求助10
16秒前
京墨襦完成签到 ,获得积分10
17秒前
17秒前
心宝贝呀完成签到,获得积分10
17秒前
18秒前
Ava应助kian采纳,获得10
19秒前
13679127159完成签到,获得积分20
20秒前
知世耶发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777273
求助须知:如何正确求助?哪些是违规求助? 5632929
关于积分的说明 15445517
捐赠科研通 4909292
什么是DOI,文献DOI怎么找? 2641678
邀请新用户注册赠送积分活动 1589644
关于科研通互助平台的介绍 1544118