Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation

计算机科学 地表径流 滑动窗口协议 机器学习 人工神经网络 大洪水 人工智能 深度学习 循环神经网络 时间序列 数据挖掘 窗口(计算) 哲学 操作系统 生物 神学 生态学
作者
Shuai Gao,Yuefei Huang,Shuo Zhang,Jing‐Cheng Han,Guangqian Wang,Meixin Zhang,Lin Qingsheng
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:589: 125188-125188 被引量:438
标识
DOI:10.1016/j.jhydrol.2020.125188
摘要

Runoff forecasting is an important approach for flood mitigation. Many machine learning models have been proposed for runoff forecasting in recent years. To reconstruct the time series of runoff data into a standard machine learning dataset, a sliding window method is usually used to pre-process the data, with the size of the window as a variable parameter which is commonly referred to as the time step. Conventional machine learning methods, such as artificial neural network models (ANN), require optimization of the time step because both too small and too large time steps reduce prediction accuracy. In this work two popular variants of Recurrent Neural Network (RNN) named Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks were employed to develop new data-driven flood forecasting models. GRU and LSTM models are in theory able to filter redundant information automatically, and therefore a large time step is expected to not reduce prediction accuracy. The three models (LSTM, GRU, and ANN) were applied to simulate runoff in the Yutan station control catchment, Fujian Province, Southeast China, using hourly discharge measurements of one runoff station and hourly rainfall of four rainfall stations from 2000 to 2014. Results show that the prediction accuracy of LSTM and GRU models increases with increasing time step, and eventually stabilizes. This allows selection of a relatively large time step in practical runoff prediction without first evaluating and optimizing the time step required by conventional machine learning models. We also show that LSTM and GRU models perform better than ANN models when the time step is optimized. GRU models have fewer parameters and less complicated structures compared to LSTM models, and our results show that GRU models perform equally well as LSTM models. GRU may be the preferred method in short term runoff predictions since it requires less time for model training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一减完成签到 ,获得积分10
1秒前
阿曾完成签到 ,获得积分10
1秒前
JING发布了新的文献求助10
1秒前
奥里给发布了新的文献求助10
1秒前
木子发布了新的文献求助10
1秒前
Sun发布了新的文献求助10
3秒前
北风完成签到 ,获得积分10
3秒前
薛妖怪完成签到,获得积分10
4秒前
6秒前
沉静的歌曲完成签到,获得积分10
6秒前
mawenyu完成签到,获得积分10
6秒前
wyg117完成签到,获得积分10
8秒前
yangzhang完成签到,获得积分10
9秒前
陈嗲嗲发布了新的文献求助10
9秒前
JING完成签到,获得积分20
11秒前
xty完成签到,获得积分10
12秒前
上官若男应助我爱查文献采纳,获得10
14秒前
fazat完成签到,获得积分20
15秒前
大力犀牛完成签到,获得积分10
17秒前
陈嗲嗲完成签到,获得积分20
17秒前
zhang完成签到,获得积分10
17秒前
糖不甜完成签到,获得积分10
18秒前
璇璇完成签到 ,获得积分10
18秒前
LIU完成签到 ,获得积分10
23秒前
路脚下完成签到 ,获得积分10
24秒前
Liu完成签到,获得积分10
25秒前
drlq2022完成签到,获得积分10
25秒前
KX2024完成签到,获得积分10
26秒前
yurunxintian完成签到,获得积分10
26秒前
打打应助蓝桉采纳,获得30
26秒前
111完成签到,获得积分10
28秒前
29秒前
柠檬完成签到 ,获得积分10
30秒前
30秒前
皓轩完成签到 ,获得积分10
32秒前
tgd完成签到,获得积分10
35秒前
Singularity发布了新的文献求助10
35秒前
洁净的易巧完成签到,获得积分10
35秒前
36秒前
风犬少年完成签到,获得积分10
38秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726