Development of a Prediction Model for Tractor Axle Torque during Tillage Operation

耕作 计算机科学
作者
Wan-Soo Kim,Yong-Joo Kim,Seung-Yun Baek,Seungmin Baek,Yeon-Soo Kim,Seong-Un Park
出处
期刊:Applied Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:10 (12): 4195- 被引量:5
标识
DOI:10.3390/app10124195
摘要

In general, the tractor axle torque is used as an indicator for making various decisions when engineers perform transmission fatigue life analysis, optimal design, and accelerated life testing. Since the existing axle torque measurement method requires an expensive torque sensor, an alternative method is required. Therefore, the aim of this study is to develop a prediction model for the tractor axle torque during tillage operation that can replace expensive axle torque sensors. A prediction model was proposed through regression analysis using key variables affecting the tractor axle torque. The engine torque, engine speed, tillage depth, slip ratio, and travel speed were selected as explanatory variables. In order to collect explanatory and dependent variable data, a load measurement system was developed, and a field experiment was performed on moldboard plow tillage using a tractor with a load measurement system. A total of eight axle torque prediction regression models were proposed using the measured calibration dataset. The adjusted coefficient of determination (R2) of the proposed regression model showed a range of 0.271 to 0.925. Among them, the prediction model E showed an adjusted R2 of 0.925. All of the prediction models were verified using a validation set. All of the axle torque prediction models showed an mean absolute percentage error (MAPE) of less than 2.8%. In particular, Model E, adopting engine torque, engine speed, and travel speed as variables, and Model H, adopting engine torque, tillage depth and travel speed as variables, showed MAPEs of 1.19 and 1.30%, respectively. Therefore, it was found that the proposed prediction models are applicable to actual axle torque prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萝卜123发布了新的文献求助20
1秒前
钩子89完成签到,获得积分10
4秒前
JamesPei应助周雪妍采纳,获得30
7秒前
8秒前
旺仔完成签到,获得积分10
9秒前
科研通AI5应助Tyj采纳,获得10
10秒前
zho发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
15秒前
18秒前
天真安完成签到 ,获得积分10
20秒前
21秒前
中单阿飞发布了新的文献求助10
21秒前
果果发布了新的文献求助10
21秒前
JamesPei应助yuko采纳,获得10
22秒前
VergissH完成签到,获得积分10
25秒前
无所谓完成签到,获得积分10
25秒前
26秒前
Russula_Chu完成签到,获得积分10
28秒前
29秒前
29秒前
30秒前
31秒前
Jasper应助Amber采纳,获得10
33秒前
科研通AI5应助果果采纳,获得10
33秒前
NexusExplorer应助大白不白采纳,获得10
33秒前
34秒前
35秒前
刘一一发布了新的文献求助10
35秒前
Hello应助认真的TOTORO采纳,获得10
36秒前
36秒前
37秒前
慕青应助ndskjhdeo采纳,获得10
37秒前
火星上冥茗完成签到,获得积分10
39秒前
42秒前
刘一一完成签到,获得积分10
42秒前
我是老大应助晚安采纳,获得10
42秒前
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814240
求助须知:如何正确求助?哪些是违规求助? 3358474
关于积分的说明 10394980
捐赠科研通 3075704
什么是DOI,文献DOI怎么找? 1689492
邀请新用户注册赠送积分活动 812987
科研通“疑难数据库(出版商)”最低求助积分说明 767416