偏移量(计算机科学)
超声波传感器
时域
校准
计算机科学
平面的
传输(电信)
声学
电子工程
光学
计算机视觉
工程类
物理
电信
量子力学
程序设计语言
计算机图形学(图像)
作者
Marcus Ingram,Anthony Gachagan,Alison Nordon,Anthony J. Mulholland,Martin Hegarty
出处
期刊:Insight
[British Institute of Non-Destructive Testing]
日期:2020-07-01
卷期号:62 (7): 408-415
被引量:5
标识
DOI:10.1784/insi.2020.62.7.408
摘要
Experimental variation from ultrasonic hardware is one source of uncertainty in measured ultrasonic data. This uncertainty leads to a reduction in the accuracy of images generated from these data. In this paper, a quick, easy-to-use and robust methodology is proposed to reduce this uncertainty in images generated using the total focusing method (TFM). Using a 128-element linear phased array, multiple full matrix capture (FMC) datasets of a planar reflection are used to characterise the experimental variation associated with each element index in the aperture. Following this, a methodology to decouple the time-domain error associated with transmission and reception at each element index is presented. These time-domain errors are then introduced into a simulated array model used to generate the two-way pressure profile from the array. The side-lobe-to-main-lobe energy ratio (SMER) and beam offset are used to quantify the impact of these measured time-domain errors on the pressure profile. This analysis shows that the SMER is raised by more than 6 dB and the beam is offset by more than 1 mm from its programmed focal position. This calibration methodology is then demonstrated using a steel non-destructive testing (NDT) sample with three side-drilled holes (SDHs). The time delay errors from transmission and reception are introduced into the time-of-flight (TOF) calculation for each ray path in the TFM. This results in an enhancement in the accuracy of defect localisation in the TFM image.
科研通智能强力驱动
Strongly Powered by AbleSci AI