Partial Multi-Label Learning with Noisy Label Identification

计算机科学 人工智能 分类器(UML) 模式识别(心理学) 多标签分类 基本事实 标识符 机器学习 一般化 噪音(视频) 数学 图像(数学) 数学分析 程序设计语言
作者
Ming-Kun Xie,Sheng-Jun Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:94
标识
DOI:10.1109/tpami.2021.3059290
摘要

Partial multi-label learning (PML) deals with problems where each instance is assigned with a candidate label set, which contains multiple relevant labels and some noisy labels. Recent studies usually solve PML problems with the disambiguation strategy, which recovers ground-truth labels from the candidate label set by simply assuming that the noisy labels are generated randomly. In real applications, however, noisy labels are usually caused by some ambiguous contents of the example. Based on this observation, we propose a partial multi-label learning approach to simultaneously recover the ground-truth information and identify the noisy labels. The two objectives are formalized in a unified framework with trace norm and l1 norm regularizers. Under the supervision of the observed noise-corrupted label matrix, the multi-label classifier and noisy label identifier are jointly optimized by incorporating the label correlation exploitation and feature-induced noise model. Furthermore, by mapping each bag to a feature vector, we extend PML-NI method into multi-instance multi-label learning by identifying noisy labels based on ambiguous instances. A theoretical analysis of generalization bound and extensive experiments on multiple data sets from various real-world tasks demonstrate the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶123发布了新的文献求助10
1秒前
张雯琪完成签到,获得积分10
1秒前
善学以致用应助pppy采纳,获得10
1秒前
1秒前
yuemeichi完成签到,获得积分10
1秒前
S-Lab Sonic发布了新的文献求助10
1秒前
huifang发布了新的文献求助10
1秒前
是小曹啊发布了新的文献求助10
1秒前
liu完成签到,获得积分10
2秒前
张慧仪发布了新的文献求助10
2秒前
开心不评完成签到,获得积分10
2秒前
3秒前
七言完成签到,获得积分10
3秒前
噜噜噜完成签到,获得积分10
3秒前
情怀应助李小伟采纳,获得10
3秒前
猪猪完成签到,获得积分10
4秒前
默默平文完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
陈乐宁2024发布了新的文献求助10
8秒前
阳阳完成签到,获得积分10
8秒前
叶123完成签到,获得积分10
8秒前
9秒前
陈谨完成签到 ,获得积分10
9秒前
YBH完成签到,获得积分10
9秒前
温柔的惜儿应助曼陀罗华采纳,获得10
9秒前
南风发布了新的文献求助10
10秒前
科研狗发布了新的文献求助10
11秒前
Tokgo完成签到,获得积分10
11秒前
leo完成签到,获得积分10
11秒前
12秒前
fei完成签到,获得积分10
13秒前
13秒前
13秒前
等待盼雁发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《续天台宗全书•史传1--天台大师传注释类》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838908
求助须知:如何正确求助?哪些是违规求助? 3381351
关于积分的说明 10517883
捐赠科研通 3100836
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821920
科研通“疑难数据库(出版商)”最低求助积分说明 773048