亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography

医学 冠状动脉 狭窄 动脉 冠状动脉疾病 放射科 卷积神经网络 心脏病学 右冠状动脉 内科学 冠状动脉造影 人工智能 计算机科学 心肌梗塞
作者
Majd Zreik,Robbert W. van Hamersvelt,Jelmer M. Wolterink,Tim Leiner,Max A. Viergever,Ivana Išgum
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (7): 1588-1598 被引量:143
标识
DOI:10.1109/tmi.2018.2883807
摘要

Various types of atherosclerotic plaque and varying grades of stenosis could lead to different management of patients with a coronary artery disease. Therefore, it is crucial to detect and classify the type of coronary artery plaque, as well as to detect and determine the degree of coronary artery stenosis. This paper includes retrospectively collected clinically obtained coronary CT angiography (CCTA) scans of 163 patients. In these, the centerlines of the coronary arteries were extracted and used to reconstruct multi-planar reformatted (MPR) images for the coronary arteries. To define the reference standard, the presence and the type of plaque in the coronary arteries (no plaque, non-calcified, mixed, calcified), as well as the presence and the anatomical significance of coronary stenosis (no stenosis, non-significant, i.e., <50% luminal narrowing, and significant, i.e., ≥50% luminal narrowing) were manually annotated in the MPR images by identifying the start- and end-points of the segment of the artery affected by the plaque. To perform an automatic analysis, a multi-task recurrent convolutional neural network is applied on coronary artery MPR images. First, a 3D convolutional neural network is utilized to extract features along the coronary artery. Subsequently, the extracted features are aggregated by a recurrent neural network that performs two simultaneous multi-class classification tasks. In the first task, the network detects and characterizes the type of the coronary artery plaque. In the second task, the network detects and determines the anatomical significance of the coronary artery stenosis. The network was trained and tested using the CCTA images of 98 and 65 patients, respectively. For detection and characterization of coronary plaque, the method was achieved an accuracy of 0.77. For detection of stenosis and determination of its anatomical significance, the method was achieved an accuracy of 0.80. The results demonstrate that automatic detection and classification of coronary artery plaque and stenosis are feasible. This may enable automated triage of patients to those without coronary plaque and those with coronary plaque and stenosis in need for further cardiovascular workup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
xiazi发布了新的文献求助10
11秒前
12秒前
顺利山柏完成签到 ,获得积分10
17秒前
oleskarabach发布了新的文献求助10
44秒前
Nancy完成签到,获得积分10
46秒前
羊了个羊发布了新的文献求助10
55秒前
57秒前
雨下听风完成签到,获得积分10
58秒前
雨下听风发布了新的文献求助10
1分钟前
1分钟前
健忘捕发布了新的文献求助10
1分钟前
1分钟前
1分钟前
眯眯眼的衬衫应助不瞌睡采纳,获得10
1分钟前
居里夫人发布了新的文献求助10
1分钟前
Nancy发布了新的文献求助10
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
无畏完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
想不出来完成签到 ,获得积分10
1分钟前
深情安青应助啊娴子采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
yy完成签到 ,获得积分10
2分钟前
啊娴子发布了新的文献求助10
2分钟前
Ahmad发布了新的文献求助10
2分钟前
2分钟前
2分钟前
wookoo发布了新的文献求助10
2分钟前
充电宝应助Ahmad采纳,获得10
2分钟前
2分钟前
852应助Hahn采纳,获得10
2分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903882
求助须知:如何正确求助?哪些是违规求助? 3448727
关于积分的说明 10854251
捐赠科研通 3174119
什么是DOI,文献DOI怎么找? 1753716
邀请新用户注册赠送积分活动 847936
科研通“疑难数据库(出版商)”最低求助积分说明 790562