A real-time system using deep learning to detect and track ureteral orifices during urinary endoscopy

内窥镜检查 快速通道 磁道(磁盘驱动器) 计算机科学 输尿管 医学 泌尿系统 人工智能 泌尿科 外科 内科学 操作系统
作者
Dingyi Liu,Peng Xin,Xiaoqing Liu,Yiming Li,Yiming Bao,Jianwei Xu,Xianzhang Bian,Wei Xue,Dahong Qian
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:128: 104104-104104 被引量:7
标识
DOI:10.1016/j.compbiomed.2020.104104
摘要

Abstract Background and objective To automatically identify and locate various types and states of the ureteral orifice (UO) in real endoscopy scenarios, we developed and verified a real-time computer-aided UO detection and tracking system using an improved real-time deep convolutional neural network and a robust tracking algorithm. Methods The single-shot multibox detector (SSD) was refined to perform the detection task. We trained both the SSD and Refined-SSD using 447 resectoscopy images with UO and tested them on 818 ureteroscopy images. We also evaluated the detection performance on endoscopy video frames, which comprised 892 resectoscopy frames and 1366 ureteroscopy frames. UOs could not be identified with certainty because sometimes they appeared on the screen in a closed state of peristaltic contraction. To mitigate this problem and mimic the inspection behavior of urologists, we integrated the SSD and Refined-SSD with five different tracking algorithms. Results When tested on 818 ureteroscopy images, our proposed UO detection network, Refined-SSD, achieved an accuracy of 0.902. In the video sequence analysis, our detection model yielded test sensitivities of 0.840 and 0.922 on resectoscopy and ureteroscopy video frames, respectively. In addition, by testing Refined-SSD on 1366 ureteroscopy video frames, the sensitivity achieved a value of 0.922, and a lowest false positive per image of 0.049 was obtained. For UO tracking performance, our proposed UO detection and tracking system (Refined-SSD integrated with CSRT) performed the best overall. At an overlap threshold of 0.5, the success rate of our proposed UO detection and tracking system was greater than 0.95 on 17 resectoscopy video clips and achieved nearly 0.95 on 40 ureteroscopy video clips. Conclusions We developed a deep learning system that could be used for detecting and tracking UOs in endoscopy scenarios in real time. This system can simultaneously maintain high accuracy. This approach has great potential to serve as an excellent learning and feedback system for trainees and new urologists in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常乌冬面完成签到,获得积分10
2秒前
JamesPei应助小璐璐呀采纳,获得10
3秒前
dd发布了新的文献求助10
3秒前
笨笨芯发布了新的文献求助100
4秒前
CipherSage应助天空没有极限采纳,获得10
4秒前
ifast完成签到 ,获得积分10
4秒前
优秀傲松完成签到,获得积分10
7秒前
9秒前
Ava应助Nature采纳,获得10
9秒前
muzi完成签到,获得积分10
10秒前
10秒前
qiao应助monan采纳,获得10
11秒前
13秒前
15秒前
下弦月完成签到,获得积分10
15秒前
科研小白发布了新的文献求助10
16秒前
jialing发布了新的文献求助10
19秒前
lizhiqian2024发布了新的文献求助10
19秒前
20秒前
合适忆南完成签到,获得积分10
20秒前
小璐璐呀发布了新的文献求助10
21秒前
masheng发布了新的文献求助10
23秒前
海上森林的一只猫完成签到 ,获得积分10
24秒前
李爱国应助科研小白采纳,获得10
25秒前
25秒前
28秒前
完美世界应助masheng采纳,获得10
29秒前
29秒前
桐桐应助善良黑夜采纳,获得10
31秒前
31秒前
man完成签到 ,获得积分10
32秒前
zhaof完成签到 ,获得积分10
32秒前
34秒前
qiao应助lyh2234采纳,获得10
34秒前
勤恳马里奥应助lyh2234采纳,获得10
34秒前
noneface发布了新的文献求助10
34秒前
票子完成签到,获得积分10
34秒前
小胡发布了新的文献求助10
35秒前
研友_VZG7GZ应助自己采纳,获得10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781828
求助须知:如何正确求助?哪些是违规求助? 3327417
关于积分的说明 10231012
捐赠科研通 3042288
什么是DOI,文献DOI怎么找? 1669966
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804