XSleepNet: Multi-View Sequential Model for Automatic Sleep Staging

过度拟合 计算机科学 人工智能 机器学习 稳健性(进化) 深度学习 多导睡眠图 一般化 睡眠阶段 代表(政治) 模式识别(心理学) 人工神经网络 数学 呼吸暂停 法学 化学 精神科 数学分析 心理学 基因 政治 生物化学 政治学
作者
Huy Phan,Oliver Y. Chén,Minh C. Tran,Philipp Koch,Alfred Mertins,Maarten De Vos
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (9): 1-1 被引量:245
标识
DOI:10.1109/tpami.2021.3070057
摘要

Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve millions experiencing sleep deprivation and disorders and enable longitudinal sleep monitoring in home environments. Learning from raw polysomnography signals and their derived time-frequency image representations has been prevalent. However, learning from multi-view inputs (e.g., both the raw signals and the time-frequency images) for sleep staging is difficult and not well understood. This work proposes a sequence-to-sequence sleep staging model, XSleepNet,1 that is capable of learning a joint representation from both raw signals and time-frequency images. Since different views may generalize or overfit at different rates, the proposed network is trained such that the learning pace on each view is adapted based on their generalization/overfitting behavior. In simple terms, the learning on a particular view is speeded up when it is generalizing well and slowed down when it is overfitting. View-specific generalization/overfitting measures are computed on-the-fly during the training course and used to derive weights to blend the gradients from different views. As a result, the network is able to retain the representation power of different views in the joint features which represent the underlying distribution better than those learned by each individual view alone. Furthermore, the XSleepNet architecture is principally designed to gain robustness to the amount of training data and to increase the complementarity between the input views. Experimental results on five databases of different sizes show that XSleepNet consistently outperforms the single-view baselines and the multi-view baseline with a simple fusion strategy. Finally, XSleepNet also outperforms prior sleep staging methods and improves previous state-of-the-art results on the experimental databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaopeipei完成签到,获得积分10
1秒前
Liuying2809完成签到 ,获得积分10
2秒前
2秒前
Kz发布了新的文献求助10
2秒前
2秒前
2秒前
6秒前
故意的秋烟完成签到,获得积分10
6秒前
白羊完成签到,获得积分10
6秒前
LLLLXR发布了新的文献求助10
6秒前
7秒前
孟雯毓发布了新的文献求助10
7秒前
tianzhen完成签到,获得积分10
7秒前
谦让的牛排完成签到 ,获得积分10
7秒前
8秒前
SSY完成签到 ,获得积分10
8秒前
zl完成签到,获得积分10
9秒前
张zh完成签到 ,获得积分10
9秒前
靓丽的傲芙完成签到,获得积分10
9秒前
袁不评发布了新的文献求助10
9秒前
10秒前
董小李完成签到,获得积分10
10秒前
10秒前
刘肥肥完成签到,获得积分10
10秒前
飘逸怜菡发布了新的文献求助10
10秒前
大意的傻春完成签到 ,获得积分10
10秒前
11秒前
桐桐应助Luna采纳,获得10
12秒前
13秒前
zhang发布了新的文献求助10
13秒前
15秒前
信仰完成签到,获得积分10
15秒前
15秒前
Maestro_S应助害羞的凡霜采纳,获得10
16秒前
17秒前
星辰大海应助youzhi315采纳,获得10
17秒前
18秒前
认真的冬易完成签到 ,获得积分10
18秒前
18秒前
Jue驳回了bkagyin应助
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898