数学
可逆矩阵
算符理论
有界函数
Hilbert空间上的紧算子
拟正规算子
厄米矩阵
有界算子
功能分析
倍线性形式
纯数学
操作员(生物学)
光谱(功能分析)
光谱理论
希尔伯特空间
域代数上的
紧算子
有限秩算子
算子空间
巴拿赫空间
数学分析
量子力学
计算机科学
物理
基因
抑制因子
转录因子
生物化学
化学
程序设计语言
扩展(谓词逻辑)
作者
Hamadi Baklouti,Sirine Namouri
标识
DOI:10.1007/s43037-021-00167-1
摘要
Let H be a Hilbert space and let A be a positive bounded operator on H. An operator \(T \in B(H)\) is said to be A-invertible if there exists \(S \in B(H)\) such that \(ATS=AST=A.\) In this paper we develop spectral analysis in relation with this new notion of invertibility. We show that this concept is well compatible with the semi-Hilbertian structure of H generated by the “indefinite” metric operator A. As well as placing the classical notion of an invertible operator in an appropriate setting, this new notion seems to be interesting for studies in the framework of non-Hermitian quantum mechanics.
科研通智能强力驱动
Strongly Powered by AbleSci AI