亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-vision-based metabolic rate and clothing insulation estimation for occupant-centric control

热舒适性 控制(管理) 服装 估计 集合(抽象数据类型) 点(几何) 温度控制 模拟 计算机科学 代谢率 人工智能 工程类
作者
Haneul Choi,Bonghoon Jeong,Joosang Lee,Hooseung Na,Kyungmo Kang,Taeyeon Kim
出处
期刊:Building and Environment [Elsevier BV]
卷期号:: 109345-109345
标识
DOI:10.1016/j.buildenv.2022.109345
摘要

The metabolic rate (MET) and clothing insulation (CLO), which are personal characteristics, are generally difficult to estimate automatically. In recent years, a combination of deep learning and computer vision (hereafter referred to as “deep vision”) has enabled real-time estimation of these characteristics. Although many studies have been conducted on the topic, practical methods for simultaneous estimation of MET and CLO and building control strategies based on these characteristics have not been sufficiently examined. This study proposes a preliminary method for classifying two activities and two clothing ensembles along with a real-time estimation of MET and CLO. In addition, a comfort temperature control strategy based on MET and CLO in a purpose-built chamber is implemented. The proposed method estimated the activities and clothing ensembles of five subjects with an accuracy of 97%, and MET and CLO with an accuracy of 100% each in the hypothetical scenario. The comfort control successfully adjusted the set-point temperature of the air conditioner according to changes in MET and CLO. Moreover, the comfort control strategy maintained the thermal sensation votes of eight subjects constant irrespective of changes in MET and CLO, and the proportion of votes representing no thermal change increased by 17% compared to that of the fixed set-point control strategy. • Deep-vision-based MET and CLO estimation method was proposed. • MET and CLO were accurately and reliably estimated in a built environment. • Comfort control was implemented in the climate chamber considering MET and CLO. • Comfort control was effective in improving subjects' TSV and TP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
majer完成签到,获得积分10
3秒前
余一台发布了新的文献求助10
8秒前
myg123完成签到 ,获得积分10
18秒前
26秒前
37秒前
neu_zxy1991完成签到,获得积分10
51秒前
56秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cwn完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zhangxiaopan发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
荣浩宇完成签到 ,获得积分10
3分钟前
领导范儿应助lin.xy采纳,获得10
3分钟前
3分钟前
zl13332完成签到 ,获得积分10
3分钟前
YU发布了新的文献求助10
3分钟前
3分钟前
情怀应助mumumuzzz采纳,获得10
4分钟前
Joy应助科研通管家采纳,获得10
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
今后应助YU采纳,获得10
5分钟前
5分钟前
怡然颦发布了新的文献求助10
5分钟前
桐桐应助miku1采纳,获得10
5分钟前
qjw发布了新的文献求助10
5分钟前
HeLL0完成签到 ,获得积分10
5分钟前
JamesPei应助Sinkei采纳,获得10
6分钟前
6分钟前
怡然颦完成签到,获得积分20
6分钟前
6分钟前
scihhhhhub发布了新的文献求助10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142960
求助须知:如何正确求助?哪些是违规求助? 3679124
关于积分的说明 11627763
捐赠科研通 3372600
什么是DOI,文献DOI怎么找? 1852408
邀请新用户注册赠送积分活动 915180
科研通“疑难数据库(出版商)”最低求助积分说明 829680