Broad auto-encoder for machinery intelligent fault diagnosis with incremental fault samples and fault modes

断层(地质) 自编码 编码器 计算机科学 旋转编码器 工程类 模式识别(心理学) 人工智能 人工神经网络 地质学 地震学 操作系统
作者
Yang Fu,Hongrui Cao,Xuefeng Chen,Jianming Ding
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:178: 109353-109353 被引量:43
标识
DOI:10.1016/j.ymssp.2022.109353
摘要

• A broad auto-encoder (BAE) with expandable architecture is developed. • The sample- and class-incremental learning capacities are developed for BAE. • A BAE based on-line intelligent diagnosis framework is proposed for machinery. • Two experiments are carried out to show the effectiveness of BAE. Intelligent fault diagnosis (IFD) has been a widely concerned topic in the field of prognostics and health management. Existing machinery IFD approaches are generally developed based on the one-time learning manner. Therefore, they are powerless to deal with the data stream issue in which new fault samples and fault modes will be progressively collected for model training. To overcome this drawback, this paper proposes a broad auto-encoder (BAE) with incremental learning capabilities for on-line IFD of machinery. The BAE is constructed by stacking a series of auto-encoders in the width direction. Then, the output weight matrix of the BAE is calculated by the ridge regression algorithm. After that, the capabilities of sample-incremental learning and class-incremental learning are developed, so that the BAE can easily update itself to accommodate the new fault samples and fault modes without model retraining. With the two incremental learning capabilities, the BAE can be first trained using limited historical fault samples, and then incrementally learn new diagnosis knowledge from the newly coming fault samples and fault modes. In this way, the BAE will be more and more powerful over time. Finally, the proposed BAE is applied to diagnose faults for high-speed train wheelset bearings and disc components. The results show that the proposed BAE offers an efficient solution for machinery IFD to deal with the continuous data stream issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一发布了新的文献求助20
1秒前
彭冬华完成签到,获得积分10
1秒前
FashionBoy应助三鲜汤采纳,获得10
1秒前
深情安青应助sijietan采纳,获得10
2秒前
even完成签到,获得积分10
3秒前
SciGPT应助故意的鸿涛采纳,获得10
3秒前
3秒前
Akim应助orange采纳,获得10
4秒前
wwwwwwjh完成签到,获得积分10
4秒前
念念完成签到,获得积分10
5秒前
5秒前
小匀匀21完成签到,获得积分10
5秒前
sherrywuxh完成签到,获得积分10
6秒前
フー・ヘイ・ホイ完成签到,获得积分10
6秒前
LLL发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
wanci应助better采纳,获得10
7秒前
开心完成签到,获得积分10
8秒前
8秒前
11秒前
11秒前
烟花应助优美紫槐采纳,获得10
12秒前
12秒前
潘继坤发布了新的文献求助10
12秒前
114514关注了科研通微信公众号
13秒前
陈浩南xy完成签到,获得积分10
13秒前
13秒前
伏黑发布了新的文献求助10
14秒前
害羞的聪健完成签到,获得积分10
14秒前
彩色发布了新的文献求助10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
桐桐应助高高的夕阳采纳,获得10
17秒前
17秒前
支凤妖发布了新的文献求助10
17秒前
17秒前
李爱国应助哈哈采纳,获得10
18秒前
DSFSD发布了新的文献求助10
18秒前
可靠小甜瓜关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513