An efficient tensor regression for high-dimensional data

张量(固有定义) 张量分解 估计员 自回归模型 数学 口译(哲学) 回归 分解 塔克分解 应用数学 计算机科学 计量经济学 统计 几何学 程序设计语言 生物 生态学
作者
Yuefeng Si,Yingying Zhang,Guodong Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2205.13734
摘要

Most currently used tensor regression models for high-dimensional data are based on Tucker decomposition, which has good properties but loses its efficiency in compressing tensors very quickly as the order of tensors increases, say greater than four or five. However, for the simplest tensor autoregression in handling time series data, its coefficient tensor already has the order of six. This paper revises a newly proposed tensor train (TT) decomposition and then applies it to tensor regression such that a nice statistical interpretation can be obtained. The new tensor regression can well match the data with hierarchical structures, and it even can lead to a better interpretation for the data with factorial structures, which are supposed to be better fitted by models with Tucker decomposition. More importantly, the new tensor regression can be easily applied to the case with higher order tensors since TT decomposition can compress the coefficient tensors much more efficiently. The methodology is also extended to tensor autoregression for time series data, and nonasymptotic properties are derived for the ordinary least squares estimations of both tensor regression and autoregression. A new algorithm is introduced to search for estimators, and its theoretical justification is also discussed. Theoretical and computational properties of the proposed methodology are verified by simulation studies, and the advantages over existing methods are illustrated by two real examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
外向半青完成签到,获得积分10
刚刚
1秒前
青ZZZZ完成签到,获得积分10
1秒前
hhhh发布了新的文献求助10
1秒前
何何何何发布了新的文献求助50
2秒前
慕青应助杨老师采纳,获得10
2秒前
戒骄戒躁发布了新的文献求助10
3秒前
3秒前
3秒前
111完成签到 ,获得积分20
4秒前
科研通AI5应助大佛老爷采纳,获得10
4秒前
5秒前
积木发布了新的文献求助10
5秒前
7秒前
8秒前
认真的问枫完成签到 ,获得积分10
9秒前
tangrzh发布了新的文献求助30
9秒前
打打应助LiDaYang采纳,获得10
10秒前
麻辣小龙虾完成签到,获得积分10
10秒前
10秒前
Owen应助菠萝炒饭采纳,获得50
11秒前
戒骄戒躁完成签到,获得积分20
11秒前
Jero完成签到,获得积分10
12秒前
优美苗条完成签到,获得积分20
13秒前
13秒前
QIAN完成签到,获得积分20
14秒前
LIUYC发布了新的文献求助10
14秒前
sadsa发布了新的文献求助10
14秒前
GGZ发布了新的文献求助10
15秒前
依梦完成签到,获得积分10
16秒前
16秒前
卡卡西应助feifeiaym采纳,获得30
17秒前
17秒前
鹿仙发布了新的文献求助20
17秒前
18秒前
Akim应助科研苦行僧采纳,获得10
19秒前
1565028013完成签到,获得积分10
19秒前
明昼完成签到,获得积分10
19秒前
白告羊羽完成签到 ,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813863
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10393295
捐赠科研通 3075577
什么是DOI,文献DOI怎么找? 1689423
邀请新用户注册赠送积分活动 812845
科研通“疑难数据库(出版商)”最低求助积分说明 767387