Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread

扇贝 可扩展性 材料科学 线程(计算) 纳米技术 计算机科学 生物 生态学 操作系统
作者
Xiaokang Zhang,Mengkui Cui,Shuoshuo Wang,Fei Han,Pingping Xu,Luyao Teng,Hang Zhao,Ping Wang,Guichu Yue,Yong Zhao,Guangfeng Liu,Ke Li,Jicong Zhang,Xiaoping Liang,Yingying Zhang,Zhiyuan Liu,Chao Zhong,Weizhi Liu
出处
期刊:Nature Communications [Springer Nature]
卷期号:13 (1) 被引量:18
标识
DOI:10.1038/s41467-022-30415-3
摘要

Abstract Biologically derived and biologically inspired fibers with outstanding mechanical properties have found attractive technical applications across diverse fields. Despite recent advances, few fibers can simultaneously possess high-extensibility and self-recovery properties especially under wet conditions. Here, we report protein-based fibers made from recombinant scallop byssal proteins with outstanding extensibility and self-recovery properties. We initially investigated the mechanical properties of the native byssal thread taken from scallop Chlamys farreri and reveal its high extensibility (327 ± 32%) that outperforms most natural biological fibers. Combining transcriptome and proteomics, we select the most abundant scallop byssal protein type 5-2 (Sbp5-2) in the thread region, and produce a recombinant protein consisting of 7 tandem repeat motifs (rTRM7) of the Sbp5-2 protein. Applying an organic solvent-enabled drawing process, we produce bio-inspired extensible rTRM7 fiber with high-extensibility (234 ± 35%) and self-recovery capability in wet condition, recapitulating the hierarchical structure and mechanical properties of the native scallop byssal thread. We further show that the mechanical properties of rTRM7 fiber are highly regulated by hydrogen bonding and intermolecular crosslinking formed through disulfide bond and metal-carboxyl coordination. With its outstanding mechanical properties, rTRM7 fiber can also be seamlessly integrated with graphene to create motion sensors and electrophysiological signal transmission electrode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zhiyun发布了新的文献求助10
1秒前
万能图书馆应助内向口红采纳,获得10
1秒前
戎荣发布了新的文献求助10
1秒前
开心谷秋完成签到,获得积分10
1秒前
1秒前
沉默不评发布了新的文献求助10
2秒前
2秒前
2秒前
OOYWZEHNN发布了新的文献求助10
2秒前
Shaw完成签到,获得积分10
2秒前
夏天发布了新的文献求助10
2秒前
小李发布了新的文献求助10
3秒前
夏天发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
刻苦沛芹完成签到,获得积分10
4秒前
打打应助炙热忆文采纳,获得10
4秒前
Orange应助牛马人采纳,获得10
5秒前
杨枝甘露完成签到 ,获得积分10
5秒前
花海完成签到,获得积分10
5秒前
FWXZ发布了新的文献求助10
5秒前
Devil发布了新的文献求助10
6秒前
鱼与完成签到,获得积分10
6秒前
6秒前
杨紫宸发布了新的文献求助10
6秒前
lilei发布了新的文献求助10
7秒前
祁淑娴发布了新的文献求助10
7秒前
7秒前
住在月亮隔壁完成签到,获得积分10
8秒前
lulu完成签到,获得积分20
8秒前
Mia233完成签到 ,获得积分10
8秒前
8秒前
科目三应助房天川采纳,获得10
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210