Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors

材料科学 自愈水凝胶 纳米复合材料 导电体 复合材料 化学工程 纤维素 蒸发 电导率 湿度 溶剂 高分子化学 有机化学 物理化学 化学 工程类 物理 热力学
作者
Jie Yu,Yufan Feng,Dan Sun,Wenfeng Ren,Changyou Shao,Run‐Cang Sun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (8): 10886-10897 被引量:142
标识
DOI:10.1021/acsami.2c00513
摘要

Conductive hydrogels are emerging as an appealing material platform for flexible electronic devices owing to their attractive mechanical flexibility and conductive properties. However, the conventional water-based conductive hydrogels tend to inevitably freeze at subzero temperature and suffer from continuous water evaporation under ambient conditions, leading to a decrease in their electrical conductivities and mechanical properties. Thus, it is extremely necessary, but generally challenging, to create an antifreezing and antidehydration conductive gel for maintaining high and stable performances in terms of electrical conductivity and mechanical properties. Herein, we fabricated a cellulose nanofibril (CNF)-reinforced and highly ion-conductive organogel featuring excellent antifreezing and antidehydration performances by immersing it in the CaCl2/sorbitol solution for solvent displacement. The incorporation of a rigid CNF serving as a dynamic connected bridge provided a hierarchical honeycomb-like cellular structure for the obtained CS-nanocomposite (NC) organogel networks, facilitating significant mechanical reinforcement. The synergy effects of sorbitol and CaCl2 allowed high-performance integration with excellent antifreezing tolerance, antidehydration ability, and ionic conductivity. Strong hydrogen bonds were formed between water molecules and sorbitol molecules to impede the formation of ice crystals and water evaporation, thereby imparting the CS-NC organogels with extreme-temperature tolerance as low as -50 °C and pre-eminent antidehydration performance with over 90% weight retention. Furthermore, this CS-NC organogel exhibited high humidity sensitivity in a wide humidity detection range (23∼97% relative humidity) because of the ready formation of hydrogen bonds between water molecules and numerous hydrophilic groups in the binary solvent and elaborated polymer chains, which can be assembled as a stretchable humidity sensor to monitor human respiration with a fast response. This work provides a new prospect for fabricating intrinsically stretchable and high-performance humidity sensors using cellulose-based humidity-responsive materials for the emerging wearable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
1秒前
3秒前
功夫完成签到,获得积分10
3秒前
mimi发布了新的文献求助10
4秒前
7秒前
杏梨完成签到,获得积分10
7秒前
小胭胭发布了新的文献求助10
8秒前
小二郎应助双儿采纳,获得10
8秒前
8秒前
8秒前
Cu完成签到,获得积分10
9秒前
天天快乐应助认真摆烂采纳,获得10
9秒前
10秒前
dingminfeng完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
杏梨发布了新的文献求助10
12秒前
阳光的道消完成签到,获得积分10
13秒前
14秒前
Jzhang完成签到 ,获得积分10
15秒前
科研通AI2S应助Bismarck采纳,获得10
15秒前
博修发布了新的文献求助10
16秒前
123发布了新的文献求助10
16秒前
Xiaoming完成签到,获得积分0
17秒前
专业中药人完成签到,获得积分10
18秒前
Orange应助封典采纳,获得10
19秒前
19秒前
上官若男应助鸽子的迷信采纳,获得30
19秒前
拜拜拜仁发布了新的文献求助20
19秒前
可爱的函函应助Qian采纳,获得10
20秒前
风清扬发布了新的文献求助10
20秒前
李爱国应助codwest采纳,获得10
22秒前
zjw发布了新的文献求助10
23秒前
24秒前
Owen应助博修采纳,获得10
24秒前
Zzzhou23完成签到,获得积分10
25秒前
谦让的紫蓝完成签到,获得积分10
26秒前
wawaaaah完成签到 ,获得积分10
26秒前
bkagyin应助穆亦擎采纳,获得10
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902656
求助须知:如何正确求助?哪些是违规求助? 3447386
关于积分的说明 10848870
捐赠科研通 3172725
什么是DOI,文献DOI怎么找? 1753080
邀请新用户注册赠送积分活动 847530
科研通“疑难数据库(出版商)”最低求助积分说明 790042