Computer-aided detection for architectural distortion: a comparison of digital breast tomosynthesis and digital mammography

技术 乳腺摄影术 层析合成 人工智能 计算机科学 乳腺癌 失真(音乐) 数字乳腺摄影术 医学 癌症 内科学 电信 带宽(计算) 放大器
作者
Yue Li,Zilong He,Xiangyuan Ma,Weixiong Zeng,Jialing Liu,Weimin Xu,Zeyuan Xu,Sina Wang,Chanjuan Wen,Hui Zeng,Jiefang Wu,Weiguo Chen,Yao Lu
标识
DOI:10.1117/12.2611287
摘要

Architectural distortion (AD) is one of the breast abnormal signs in digital breast tomosynthesis (DBT) and digital mammography (DM). It is hard to be detected because of its subtle appearance and similar intensity with surrounding tissue. Since DBT is a three-dimensional imaging, it can address the problem of tissue superimposition in DM, so as to reduce false positives and false negatives. Several clinical studies have confirmed that radiologists can detect more ADs in DBT than in DM. These conclusions are based on subjective experience. To explore whether the engineering model and the experience of radiologists are consistent in AD detection tasks, this study compared the AD detection performance of a deep-learning-based computer-aided detection (CADe) model in DBT and DM images of the same group of cases. 394 DBT volumes and their corresponding DM images were collected retrospectively from 99 breast cancer screening cases. Among them, 203 DBT volumes and DM images contained ADs and the remaining 191 ones were negative group without any AD. Ten-fold cross-validation was used to train and evaluate the models and mean true positive fraction (MTPF) was used as figure-of-merit. The results showed that the CADe model achieved significantly better detection performance in DBT than DM (MTPF: 0.7026±0.0394 for DBT vs. 0.5870±0.0407 for DM, p=0.002). Qualitative analysis illustrated that DBT indeed had the ability to overcome tissue superimposition and showed more details of breast tissue. It helped the CADe model detect more ADs, which was consistent with clinical experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaerless完成签到,获得积分10
1秒前
槿裡完成签到 ,获得积分10
1秒前
yj1506837246发布了新的文献求助10
1秒前
复杂博完成签到,获得积分10
2秒前
樵木发布了新的文献求助30
2秒前
快乐人杰发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
sxt发布了新的文献求助10
8秒前
L2r完成签到,获得积分20
8秒前
九个太阳完成签到,获得积分10
9秒前
9秒前
修语发布了新的文献求助10
10秒前
爆米花应助liu采纳,获得10
10秒前
孙雪松完成签到 ,获得积分10
12秒前
xyqnb发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
莓莓MM完成签到,获得积分10
18秒前
superx发布了新的文献求助10
18秒前
脑洞疼应助彼岸@采纳,获得10
19秒前
21秒前
微笑奇迹发布了新的文献求助10
22秒前
23秒前
曹二完成签到,获得积分20
24秒前
寻路完成签到,获得积分10
25秒前
joasuka发布了新的文献求助10
25秒前
26秒前
pkuwalker发布了新的文献求助10
26秒前
Rita发布了新的文献求助10
26秒前
博一完成签到,获得积分10
28秒前
29秒前
29秒前
风花雪月发布了新的文献求助10
29秒前
dragonking520完成签到 ,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955943
求助须知:如何正确求助?哪些是违规求助? 3502134
关于积分的说明 11106024
捐赠科研通 3232512
什么是DOI,文献DOI怎么找? 1786999
邀请新用户注册赠送积分活动 870307
科研通“疑难数据库(出版商)”最低求助积分说明 801960