PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting

计算机科学 图形 人工智能 地图学 理论计算机科学 地理
作者
Yuyol Shin,Yoonjin Yoon
出处
期刊:Cornell University - arXiv 被引量:9
标识
DOI:10.48550/arxiv.2202.08982
摘要

The complex spatial-temporal correlations in transportation networks make the traffic forecasting problem challenging. Since transportation system inherently possesses graph structures, many research efforts have been put with graph neural networks. Recently, constructing adaptive graphs to the data has shown promising results over the models relying on a single static graph structure. However, the graph adaptations are applied during the training phases and do not reflect the data used during the testing phases. Such shortcomings can be problematic especially in traffic forecasting since the traffic data often suffer from unexpected changes and irregularities in the time series. In this study, we propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN). PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases. Specifically, we implemented the model to construct progressive adjacency matrices by learning trend similarities among graph nodes. Then, the model is combined with the dilated causal convolution and gated activation unit to extract temporal features. With residual and skip connections, PGCN performs the traffic prediction. When applied to seven real-world traffic datasets of diverse geometric nature, the proposed model achieves state-of-the-art performance with consistency in all datasets. We conclude that the ability of PGCN to progressively adapt to input data enables the model to generalize in different study sites with robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aefs完成签到,获得积分20
1秒前
1秒前
2秒前
xiixix应助jgpiao采纳,获得10
3秒前
CodeCraft应助含蓄的赛君采纳,获得30
3秒前
jenningseastera应助hutu采纳,获得10
3秒前
Michael发布了新的文献求助10
5秒前
烟花应助VDC采纳,获得10
5秒前
在水一方应助斯文的从彤采纳,获得10
6秒前
开心重要完成签到,获得积分20
7秒前
7秒前
汉堡包应助爱吃肥牛采纳,获得10
7秒前
领导范儿应助聪明的傲白采纳,获得10
8秒前
8秒前
feng完成签到,获得积分10
8秒前
kkkkkkkkkkk完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得50
9秒前
务实的焦发布了新的文献求助10
9秒前
科研通AI5应助ww采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
LSX应助科研通管家采纳,获得10
9秒前
开心重要发布了新的文献求助10
10秒前
搜集达人应助晚云烟月采纳,获得10
11秒前
大个应助月如钩采纳,获得10
11秒前
11秒前
妮妮完成签到,获得积分10
11秒前
情怀应助王宇采纳,获得10
11秒前
勤劳菠萝发布了新的文献求助10
12秒前
amor完成签到,获得积分10
13秒前
13秒前
gc发布了新的文献求助10
13秒前
善学以致用应助xiaojie2024采纳,获得10
14秒前
肚子圆圆的完成签到 ,获得积分10
14秒前
ZS发布了新的文献求助30
14秒前
15秒前
baolong发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790712
求助须知:如何正确求助?哪些是违规求助? 3335592
关于积分的说明 10275421
捐赠科研通 3052056
什么是DOI,文献DOI怎么找? 1674986
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007