GraphTGI: an attention-based graph embedding model for predicting TF-target gene interactions

计算机科学 自编码 人工智能 Python(编程语言) 图形 交互信息 机器学习 基因调控网络 数据挖掘 深度学习 计算生物学 基因 理论计算机科学 生物 遗传学 数学 统计 操作系统 基因表达
作者
Zhihua Du,Yang-Han Wu,Yuan Huang,Jie Chen,Gui-Qing Pan,Lun Hu,Zhu‐Hong You,Jianqiang Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:7
标识
DOI:10.1093/bib/bbac148
摘要

Interaction between transcription factor (TF) and its target genes establishes the knowledge foundation for biological researches in transcriptional regulation, the number of which is, however, still limited by biological techniques. Existing computational methods relevant to the prediction of TF-target interactions are mostly proposed for predicting binding sites, rather than directly predicting the interactions. To this end, we propose here a graph attention-based autoencoder model to predict TF-target gene interactions using the information of the known TF-target gene interaction network combined with two sequential and chemical gene characters, considering that the unobserved interactions between transcription factors and target genes can be predicted by learning the pattern of the known ones. To the best of our knowledge, the proposed model is the first attempt to solve this problem by learning patterns from the known TF-target gene interaction network.In this paper, we formulate the prediction task of TF-target gene interactions as a link prediction problem on a complex knowledge graph and propose a deep learning model called GraphTGI, which is composed of a graph attention-based encoder and a bilinear decoder. We evaluated the prediction performance of the proposed method on a real dataset, and the experimental results show that the proposed model yields outstanding performance with an average AUC value of 0.8864 +/- 0.0057 in the 5-fold cross-validation. It is anticipated that the GraphTGI model can effectively and efficiently predict TF-target gene interactions on a large scale.Python code and the datasets used in our studies are made available at https://github.com/YanghanWu/GraphTGI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhentg发布了新的文献求助10
刚刚
妮宝发布了新的文献求助10
2秒前
斯文可仁发布了新的文献求助10
3秒前
fdsv发布了新的文献求助10
5秒前
微笑子慧发布了新的文献求助10
5秒前
6秒前
彭栋完成签到,获得积分10
6秒前
7秒前
7秒前
土豪的笑柳完成签到,获得积分10
8秒前
谦让乘云完成签到,获得积分10
8秒前
10秒前
10秒前
大呆发布了新的文献求助10
11秒前
顺利凌寒发布了新的文献求助10
11秒前
HH完成签到,获得积分10
12秒前
妮宝完成签到,获得积分10
13秒前
iNk应助rr采纳,获得20
14秒前
14秒前
科研通AI5应助师德采纳,获得10
15秒前
15秒前
16秒前
VDC应助大呆采纳,获得30
19秒前
yyywwwddd333给yyywwwddd333的求助进行了留言
19秒前
zhi完成签到,获得积分20
19秒前
123应助整齐唯雪采纳,获得10
19秒前
孤独从云完成签到,获得积分10
20秒前
tramp应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Akim应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
tramp应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得30
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794866
求助须知:如何正确求助?哪些是违规求助? 3339745
关于积分的说明 10297072
捐赠科研通 3056404
什么是DOI,文献DOI怎么找? 1676972
邀请新用户注册赠送积分活动 804994
科研通“疑难数据库(出版商)”最低求助积分说明 762286