Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network

医学 卷积神经网络 核医学 正电子发射断层摄影术 PET-CT 放射科 人工智能 病理 计算机科学
作者
Sangwon Han,Jungsu S. Oh,Yong-il Kim,Seung Yeon Seo,Geun Dong Lee,Min-Jae Park,Sehoon Choi,Hyeong Ryul Kim,Yong‐Hee Kim,Dong Kwan Kim,Seung-Il Park,Jin‐Sook Ryu
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
卷期号:47 (7): 590-598 被引量:6
标识
DOI:10.1097/rlu.0000000000004146
摘要

Objectives The aim of this study was to develop a deep learning (DL)–based segmentation algorithm for automatic measurement of metabolic parameters of 18 F-FDG PET/CT in thymic epithelial tumors (TETs), comparable performance to manual volumes of interest. Patients and Methods A total of 186 consecutive patients with resectable TETs and preoperative 18 F-FDG PET/CT were retrospectively enrolled (145 thymomas, 41 thymic carcinomas). A quasi-3D U-net architecture was trained to resemble ground-truth volumes of interest. Segmentation performance was assessed using the Dice similarity coefficient. Agreements between manual and DL-based automated extraction of SUV max , metabolic tumor volume (MTV), total lesion glycolysis (TLG), and 63 radiomics features were evaluated via concordance correlation coefficients (CCCs) and linear regression slopes. Diagnostic and prognostic values were compared in terms of area under the receiver operating characteristics curve (AUC) for thymic carcinoma and hazards ratios (HRs) for freedom from recurrence. Results The mean Dice similarity coefficient was 0.83 ± 0.34. Automatically measured SUV max (slope, 0.97; CCC, 0.92), MTV (slope, 0.94; CCC, 0.96), and TLG (slope, 0.96; CCC, 0.96) were in good agreement with manual measurements. The mean CCC and slopes were 0.88 ± 0.06 and 0.89 ± 0.05, respectively, for the radiomics parameters. Automatically measured SUV max , MTV, and TLG showed good diagnostic accuracy for thymic carcinoma (AUCs: SUV max , 0.95; MTV, 0.85; TLG, 0.87) and significant prognostic value (HRs: SUV max , 1.31 [95% confidence interval, 1.16–1.48]; MTV, 2.11 [1.09–4.06]; TLG, 1.90 [1.12–3.23]). No significant differences in the AUCs or HRs were found between automatic and manual measurements for any of the metabolic parameters. Conclusions Our DL-based model provides comparable segmentation performance and metabolic parameter values to manual measurements in TETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
哦豁发布了新的文献求助10
4秒前
明亮的一瓶完成签到 ,获得积分10
4秒前
桑桑发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
xiang发布了新的文献求助10
8秒前
凶狠的食铁兽完成签到,获得积分10
9秒前
14秒前
无奈的萍发布了新的文献求助10
14秒前
彭于晏应助可靠的中心采纳,获得10
14秒前
Cherish应助small采纳,获得10
15秒前
Neko发布了新的文献求助10
16秒前
rookie_b0完成签到,获得积分10
18秒前
雪山飞龙发布了新的文献求助10
19秒前
一瓶牛完成签到 ,获得积分10
20秒前
Owen应助qq采纳,获得10
20秒前
Lily完成签到,获得积分10
23秒前
24秒前
哦豁完成签到,获得积分10
27秒前
无花果应助Iso采纳,获得10
27秒前
星期八完成签到,获得积分10
28秒前
rookie_b0发布了新的文献求助10
28秒前
LiYu完成签到,获得积分10
32秒前
尛破孩完成签到,获得积分10
34秒前
34秒前
酷波er应助无奈的萍采纳,获得10
34秒前
39秒前
Sicily发布了新的文献求助10
40秒前
HHYYAA完成签到,获得积分10
41秒前
42秒前
42秒前
43秒前
冰川川发布了新的文献求助10
47秒前
miaomiao发布了新的文献求助10
49秒前
Iso发布了新的文献求助10
49秒前
49秒前
50秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10237018
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126