亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age Prediction

神经影像学 计算机科学 图形 静息状态功能磁共振成像 人工智能 残余物 图论 节点(物理) 模式识别(心理学) 理论计算机科学 算法 数学 心理学 神经科学 组合数学 结构工程 工程类
作者
Yu Li,Xin Zhang,Jingxin Nie,Guowei Zhang,Ruiyan Fang,Xiangmin Xu,Zhengwang Wu,Dan Hu,Li Wang,Han Zhang,Weili Lin,Gang Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2764-2776 被引量:58
标识
DOI:10.1109/tmi.2022.3171778
摘要

Infancy is a critical period for the human brain development, and brain age is one of the indices for the brain development status associated with neuroimaging data. The difference between the predicted age based on neuroimaging and the chronological age can provide an important early indicator of deviation from the normal developmental trajectory. In this study, we utilize the Graph Convolutional Network (GCN) to predict the infant brain age based on resting-state fMRI data. The brain connectivity obtained from rs-fMRI can be represented as a graph with brain regions as nodes and functional connections as edges. However, since the brain connectivity is a fully connected graph with features on edges, current GCN cannot be directly used for it is a node-based method for sparse graphs. Hence, we propose an edge-based Graph Path Convolution (GPC) method, which aggregates the information from different paths and can be naturally applied on dense graphs. We refer the whole model as Brain Connectivity Graph Convolutional Networks (BC-GCN). Further, two upgraded network structures are proposed by including the residual and attention modules, referred as BC-GCN-Res and BC-GCN-SE to emphasize the information of the original data and enhance influential channels. Moreover, we design a two-stage coarse-to-fine framework, which determines the age group first and then predicts the age using group-specific BC-GCN-SE models. To avoid accumulated errors from the first stage, a cross-group training strategy is adopted for the second stage regression models. We conduct experiments on infant fMRI scans from 6 to 811 days of age. The coarse-to-fine framework shows significant improvements when being applied to several models (reducing error over 10 days). Comparing with state-of-the-art methods, our proposed model BC-GCN-SE with coarse-to-fine framework reduces the mean absolute error of the prediction from >70 days to 49.9 days. The code is now available at https://github.com/SCUT-Xinlab/BC-GCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
50秒前
58秒前
1分钟前
西红柿有饭吃吗完成签到,获得积分20
1分钟前
1分钟前
wise111发布了新的文献求助10
1分钟前
隐形曼青应助wise111采纳,获得10
1分钟前
1分钟前
lzy完成签到,获得积分10
1分钟前
wise111发布了新的文献求助10
1分钟前
2分钟前
wise111完成签到,获得积分10
2分钟前
小二郎应助wise111采纳,获得10
2分钟前
2分钟前
万能图书馆应助Tobeyleonard采纳,获得10
2分钟前
2分钟前
WebCasa完成签到,获得积分10
2分钟前
wise111发布了新的文献求助10
2分钟前
陈小子完成签到 ,获得积分10
3分钟前
李爱国应助wise111采纳,获得10
3分钟前
3分钟前
fys131415完成签到 ,获得积分10
3分钟前
3分钟前
wise111发布了新的文献求助10
3分钟前
blenx完成签到,获得积分10
4分钟前
ChaiHaobo完成签到,获得积分10
4分钟前
HR112应助ChaiHaobo采纳,获得10
4分钟前
4分钟前
4分钟前
Tobeyleonard发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
火星上的山河完成签到 ,获得积分10
4分钟前
Tobeyleonard完成签到,获得积分10
4分钟前
5分钟前
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得200
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455110
求助须知:如何正确求助?哪些是违规求助? 4562311
关于积分的说明 14285006
捐赠科研通 4486263
什么是DOI,文献DOI怎么找? 2457288
邀请新用户注册赠送积分活动 1447894
关于科研通互助平台的介绍 1423183