Built-in electric field mediated peroxymonosulfate activation over biochar supported-Co3O4 catalyst for tetracycline hydrochloride degradation

催化作用 生物炭 盐酸四环素 化学 降级(电信) 氧化还原 电子转移 复合数 催化循环 纳米颗粒 化学工程 四环素 光化学 材料科学 无机化学 有机化学 热解 复合材料 生物化学 工程类 抗生素 电信 计算机科学
作者
Minghui Xiong,Juntao Yan,Guozhi Fan,Yanyu Liu,Bo Chai,Chunlei Wang,Guangsen Song
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:444: 136589-136589 被引量:114
标识
DOI:10.1016/j.cej.2022.136589
摘要

The strong electronic interaction between heterogeneous composite catalysts facilitates the charge separation and transfer, which is favorable for the enhancement of catalytic performance. Herein, the rape straw derived biochar (BC) supported ultrafine Co3O4 composites were synthesized for tetracycline hydrochloride (TC) degradation via activating peroxymonosulfate (PMS), and the built-in electric field (BIEF) driven catalytic degradation mechanism was proposed. The results indicated that 20 wt% Co3O4/BC catalyst could achieve 90% degradation efficiency of TC within 20 min, and demonstrated that BC not only served as a support to significantly inhibit the agglomeration of Co3O4 nanoparticles and improve the stability of catalyst, but also behaved as an activator of PMS to participate in the catalytic degradation reaction. Both radical pathway (SO4·-, ·OH and O2·-) and non-radical process (1O2 and direct electron transfer) were involved in the Co3O4/BC/PMS system, and the role of the latter is more prominent, in which Co2+/Co3+ redox cycle and C = O groups on the BC were the possible active sites. Furthermore, the density functional theory (DFT) calculations revealed that a BIEF pointing from BC to Co3O4 at the interface was formed, which could act as the internal driving force for electron transfer to accelerate the redox cycle of Co2+/Co3+ and induce the direct electron transfer, and thus resulting in the better degradation of TC. This work not only offered a mechanistic insight into synergistic effects of composite catalyst in PMS activation, but also provided a win–win strategy of realizing the resource utilization of agricultural waste and environmental remediation simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深藏blue发布了新的文献求助10
刚刚
1秒前
ShaoyunJia完成签到,获得积分20
1秒前
Lucas应助噢噢采纳,获得10
1秒前
寻梦完成签到,获得积分10
1秒前
2秒前
2秒前
深情安青应助ln采纳,获得10
2秒前
耍酷的曼青完成签到,获得积分10
2秒前
wyq完成签到,获得积分10
3秒前
Mr.W-CHN完成签到,获得积分20
3秒前
3秒前
Alex发布了新的文献求助200
3秒前
研友_VZG7GZ应助4归0采纳,获得10
4秒前
xht关闭了xht文献求助
4秒前
Alex应助杨晓白采纳,获得20
4秒前
5秒前
5秒前
xxxx发布了新的文献求助30
5秒前
gg完成签到,获得积分10
5秒前
6秒前
有足量NaCl发布了新的文献求助10
6秒前
薪吉发布了新的文献求助10
6秒前
123完成签到,获得积分10
7秒前
9秒前
9秒前
taku发布了新的文献求助10
10秒前
逝月发布了新的文献求助10
11秒前
只只完成签到,获得积分20
12秒前
银河以北鸿艳最美完成签到,获得积分10
12秒前
zoe发布了新的文献求助20
13秒前
噢噢完成签到,获得积分10
13秒前
magiczhu完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助谨慎的芹菜采纳,获得10
16秒前
隐形曼青应助重要的向露采纳,获得10
17秒前
18秒前
Lxz完成签到 ,获得积分10
18秒前
19秒前
芒果味猕猴桃完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397