Quantitative assessment of neonatal health using dried blood spot metabolite profiles and deep learning

早产儿视网膜病变 医学 坏死性小肠结肠炎 胎龄 支气管肺发育不良 儿科 风险评估 脑室出血 小于胎龄 干血斑 队列研究 低出生体重 队列 出生体重 回顾性队列研究 重症监护医学 生物标志物 新生儿筛查 不利影响 早产 人口 婴儿死亡率 小肠结肠炎
作者
A. C. CHANG
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.17984154
摘要

Neonatal prematurity leads to considerable morbidity and mortality, in part due to acquired conditions such as bronchopulmonary dysplasia (BPD), intraventricular hemorrhage (IVH), necrotizing enterocolitis (NEC), and retinopathy of prematurity (ROP). Standard gestational age and birthweight-based classifications of prematurity inadequately capture the variation in the health outcomes, creating an urgent need to develop risk stratification tools for vulnerable newborn infants in order to initiate the most appropriate care pathways as early as possible. We hypothesized that the metabolic profiles of newborn infants captures additional risk information beyond current measures. 13,536 newborn screening (NBS) blood spot tests from preterm infants in California with linked clinical outcomes of prematurity were used to develop an NBS-based metabolic health index to stratify preterm infants at risk for BPD, IVH, NEC, and ROP (12,096 cases with one or more conditions and 1,440 controls) through a deep learning model that provides a single index score in tandem with subgroup discovery to identify individuals with the strongest metabolite biomarker signals for adverse outcomes of prematurity. This metabolic health index captures risk signals that are distinct from gestational age and birthweight and outperformed other machine learning algorithms and clinical risk variable-based models in stratifying at-risk individuals for adverse outcomes of prematurity. The metabolic health index was externally validated in an independent retrospective cohort of 3,299 premature newborns from Ontario, Canada (2,117 cases and 1,182 controls) which also recapitulated common metabolic risk subgroups. In summary, combining wide-spread metabolite screening with deep learning established a generalizable biological risk metric of prematurity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助law采纳,获得10
刚刚
Lucas应助Hina采纳,获得10
刚刚
刚刚
开心的的发箍完成签到,获得积分20
刚刚
cindy完成签到,获得积分10
刚刚
蓝天发布了新的文献求助10
1秒前
思源应助忍冬半夏采纳,获得10
1秒前
1秒前
1秒前
2秒前
我是老大应助俊俊采纳,获得10
2秒前
基础题发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
阮梽珅完成签到,获得积分10
3秒前
wangle_17完成签到,获得积分10
3秒前
3秒前
笛卡尔完成签到,获得积分10
3秒前
4秒前
4秒前
无敌山竹完成签到,获得积分10
4秒前
5秒前
XCY完成签到,获得积分20
5秒前
零灵8023完成签到,获得积分10
5秒前
阮梽珅发布了新的文献求助20
6秒前
东山发布了新的文献求助10
6秒前
科研通AI6.1应助richael采纳,获得10
7秒前
斯文败类应助0001采纳,获得10
7秒前
meng发布了新的文献求助10
7秒前
wangle_17发布了新的文献求助30
7秒前
充电宝应助来一桶微笑采纳,获得10
8秒前
8秒前
jyh发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882