亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using deep-learning radiomics to predict lung cancer histology.

医学 无线电技术 肺癌 组织学 癌症 病理 放射科 内科学
作者
Tafadzwa L. Chaunzwa,David C. Christiani,Michael Lanuti,Andrea T. Shafer,Nancy Diao,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:36 (15_suppl): 8545-8545 被引量:12
标识
DOI:10.1200/jco.2018.36.15_suppl.8545
摘要

8545 Background: Histologic phenotype is an important predictor of clinical outcomes in lung cancer. Tissue diagnosis is the most definitive approach to categorization, however, this is often technically challenging for thoracic lesions. In this study, we explore Deep-Learning Radiomics methods for non-invasive histology classification in early-stage Non-Small Cell Lung Cancer (NSCLC). Methods: A cohort of 157 patients with Stage I NSCLC identified as either adenocarcinoma or squamous cell carcinoma on pathology was used. All patients were surgical candidates at Massachusetts General Hospital between 2004-2010. Deep feature extraction from pretreatment CT images was conducted using a pre-trained VGG-16 convolutional neural network (CNN). In addition to appending fully-connected classifying layers to the network, a transfer learning approach was also employed using different classifiers. Three machine-learning classification models were independently evaluated on the extracted features: K-Nearest Neighbors (kNN), Random Forest Classifier (RF), and Least Absolute Shrinkage and Selection Operator (LASSO). Principal component analysis was employed in selecting features corresponding to 90% cumulative explained variance. A LASSO method was then used to select the best features. Models were trained on 100 patients and cross-validated on an independent test-set of 57 patients. Results: All models were able to perform binary classification of tumor histology (adenocarcinoma vs squamous cell carcinoma). The fully-connected CNN had the highest performance (AUC = 0.751). Other classifiers also showed significant predictive power after dimension reduction of the feature space (from 512 to 46), with AUC = 0.712 for LASSO (α = 0.1), and AUC = 0.689 for kNN (k = 5). RF had the lowest predictive performance (AUC = 0.533). 73% of the study group had adenocarcinoma vs 27% with squamous cell carcinoma, and ratios were balanced between training and validation sets. Conclusions: Deep-Learning Radiomics is a promising approach to non-invasive lung cancer histology classification. These methods can potentially augment other emerging techniques, such as liquid biopsy; offering complementary information to help in clinical decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璇别给璇别的求助进行了留言
50秒前
Li应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
Li应助科研通管家采纳,获得10
1分钟前
Fischl完成签到 ,获得积分10
1分钟前
自然幼翠完成签到,获得积分20
2分钟前
自然幼翠发布了新的文献求助30
2分钟前
zm发布了新的文献求助10
2分钟前
Li应助科研通管家采纳,获得10
3分钟前
Li应助科研通管家采纳,获得10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
bc应助科研通管家采纳,获得30
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
zm完成签到,获得积分10
4分钟前
4分钟前
getgetting发布了新的文献求助10
4分钟前
4分钟前
zzzjh发布了新的文献求助10
5分钟前
小吴发布了新的文献求助10
5分钟前
今后应助zzzjh采纳,获得10
5分钟前
5分钟前
zoey发布了新的文献求助10
5分钟前
搜集达人应助zoey采纳,获得10
5分钟前
Li应助科研通管家采纳,获得10
5分钟前
jyy应助科研通管家采纳,获得10
5分钟前
h0jian09完成签到,获得积分10
7分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
不胜玖完成签到 ,获得积分10
8分钟前
清秀灵薇完成签到,获得积分10
8分钟前
一只榴莲发布了新的文献求助10
8分钟前
8分钟前
搜集达人应助一只榴莲采纳,获得10
8分钟前
8分钟前
zzzjh发布了新的文献求助10
8分钟前
11发布了新的文献求助10
8分钟前
11完成签到,获得积分10
9分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346432
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714