Using deep-learning radiomics to predict lung cancer histology.

医学 无线电技术 肺癌 组织学 癌症 病理 放射科 内科学
作者
Tafadzwa L. Chaunzwa,David C. Christiani,Michael Lanuti,Andrea T. Shafer,Nancy Diao,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:36 (15_suppl): 8545-8545 被引量:12
标识
DOI:10.1200/jco.2018.36.15_suppl.8545
摘要

8545 Background: Histologic phenotype is an important predictor of clinical outcomes in lung cancer. Tissue diagnosis is the most definitive approach to categorization, however, this is often technically challenging for thoracic lesions. In this study, we explore Deep-Learning Radiomics methods for non-invasive histology classification in early-stage Non-Small Cell Lung Cancer (NSCLC). Methods: A cohort of 157 patients with Stage I NSCLC identified as either adenocarcinoma or squamous cell carcinoma on pathology was used. All patients were surgical candidates at Massachusetts General Hospital between 2004-2010. Deep feature extraction from pretreatment CT images was conducted using a pre-trained VGG-16 convolutional neural network (CNN). In addition to appending fully-connected classifying layers to the network, a transfer learning approach was also employed using different classifiers. Three machine-learning classification models were independently evaluated on the extracted features: K-Nearest Neighbors (kNN), Random Forest Classifier (RF), and Least Absolute Shrinkage and Selection Operator (LASSO). Principal component analysis was employed in selecting features corresponding to 90% cumulative explained variance. A LASSO method was then used to select the best features. Models were trained on 100 patients and cross-validated on an independent test-set of 57 patients. Results: All models were able to perform binary classification of tumor histology (adenocarcinoma vs squamous cell carcinoma). The fully-connected CNN had the highest performance (AUC = 0.751). Other classifiers also showed significant predictive power after dimension reduction of the feature space (from 512 to 46), with AUC = 0.712 for LASSO (α = 0.1), and AUC = 0.689 for kNN (k = 5). RF had the lowest predictive performance (AUC = 0.533). 73% of the study group had adenocarcinoma vs 27% with squamous cell carcinoma, and ratios were balanced between training and validation sets. Conclusions: Deep-Learning Radiomics is a promising approach to non-invasive lung cancer histology classification. These methods can potentially augment other emerging techniques, such as liquid biopsy; offering complementary information to help in clinical decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气谷兰发布了新的文献求助10
1秒前
Latono发布了新的文献求助10
2秒前
2秒前
史小霜发布了新的文献求助10
2秒前
一瓣橘子完成签到,获得积分10
2秒前
3秒前
123123完成签到,获得积分10
3秒前
科研通AI6应助ssss采纳,获得10
4秒前
5秒前
5秒前
kk发布了新的文献求助10
6秒前
Orange应助changyongcheng采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助筑城院采纳,获得10
7秒前
8秒前
8秒前
丘比特应助KD采纳,获得10
8秒前
xing完成签到,获得积分10
8秒前
春风十里完成签到,获得积分10
8秒前
拼搏梦岚完成签到,获得积分10
8秒前
朱寒宇发布了新的文献求助10
9秒前
达拉崩吧发布了新的文献求助10
10秒前
冷静的夏槐完成签到,获得积分10
10秒前
FashionBoy应助qihang采纳,获得10
11秒前
11秒前
12秒前
solitude发布了新的文献求助10
13秒前
Latono完成签到,获得积分10
13秒前
14秒前
秋浱发布了新的文献求助10
14秒前
15秒前
淡然的菲鹰完成签到 ,获得积分10
16秒前
bo完成签到,获得积分10
16秒前
mxl关闭了mxl文献求助
16秒前
16秒前
烟花应助加一采纳,获得10
17秒前
Jasper应助iceice采纳,获得10
17秒前
Xxx发布了新的文献求助10
18秒前
Lucas应助呆呆要努力采纳,获得10
18秒前
andrele发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956899
求助须知:如何正确求助?哪些是违规求助? 4218556
关于积分的说明 13129814
捐赠科研通 4001417
什么是DOI,文献DOI怎么找? 2189754
邀请新用户注册赠送积分活动 1204734
关于科研通互助平台的介绍 1116414