MirrorGAN: Learning Text-to-image Generation by Redescription

计算机科学 一致性(知识库) 人工智能 判决 水准点(测量) 词(群论) 自然语言处理 生成语法 图像(数学) 情报检索 语言学 大地测量学 哲学 地理
作者
Tingting Qiao,Jing Zhang,Duanqing Xu,Dacheng Tao
出处
期刊:Cornell University - arXiv 被引量:37
标识
DOI:10.48550/arxiv.1903.05854
摘要

Generating an image from a given text description has two goals: visual realism and semantic consistency. Although significant progress has been made in generating high-quality and visually realistic images using generative adversarial networks, guaranteeing semantic consistency between the text description and visual content remains very challenging. In this paper, we address this problem by proposing a novel global-local attentive and semantic-preserving text-to-image-to-text framework called MirrorGAN. MirrorGAN exploits the idea of learning text-to-image generation by redescription and consists of three modules: a semantic text embedding module (STEM), a global-local collaborative attentive module for cascaded image generation (GLAM), and a semantic text regeneration and alignment module (STREAM). STEM generates word- and sentence-level embeddings. GLAM has a cascaded architecture for generating target images from coarse to fine scales, leveraging both local word attention and global sentence attention to progressively enhance the diversity and semantic consistency of the generated images. STREAM seeks to regenerate the text description from the generated image, which semantically aligns with the given text description. Thorough experiments on two public benchmark datasets demonstrate the superiority of MirrorGAN over other representative state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
scsc完成签到,获得积分10
1秒前
2秒前
3秒前
怕黑的纸鹤完成签到 ,获得积分10
4秒前
4秒前
4秒前
nana完成签到,获得积分10
5秒前
朱朱完成签到,获得积分10
5秒前
5秒前
今朝完成签到,获得积分20
5秒前
orixero应助宋芽芽采纳,获得10
6秒前
杨乃彬完成签到,获得积分10
6秒前
敏子发布了新的文献求助10
7秒前
朱朱发布了新的文献求助10
7秒前
李剑鸿发布了新的文献求助30
8秒前
9秒前
xxxxyyyy1完成签到 ,获得积分10
9秒前
默默的惜灵完成签到 ,获得积分10
9秒前
科研通AI5应助powozhi13579采纳,获得10
9秒前
顺利数据线完成签到,获得积分20
10秒前
今天喝咖啡吗完成签到,获得积分10
10秒前
11秒前
Crystal发布了新的文献求助30
11秒前
12秒前
喜来乐发布了新的文献求助10
14秒前
yc完成签到,获得积分10
14秒前
大个应助和谐的以寒采纳,获得10
15秒前
慕青应助张子翀采纳,获得10
17秒前
Lucas应助朱朱采纳,获得10
17秒前
17秒前
17秒前
17秒前
拓荒者发布了新的文献求助30
17秒前
jenningseastera应助端庄白梦采纳,获得10
17秒前
酷酷的TA完成签到,获得积分10
18秒前
Cala洛~完成签到 ,获得积分10
18秒前
19秒前
图雄争霸完成签到 ,获得积分10
20秒前
KYG应助Crystal采纳,获得30
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794465
求助须知:如何正确求助?哪些是违规求助? 3339359
关于积分的说明 10295537
捐赠科研通 3055941
什么是DOI,文献DOI怎么找? 1676881
邀请新用户注册赠送积分活动 804876
科研通“疑难数据库(出版商)”最低求助积分说明 762174