Cascaded Generative and Discriminative Learning for Microcalcification Detection in Breast Mammograms

判别式 人工智能 微钙化 计算机科学 模式识别(心理学) 假阳性悖论 异常检测 生成模型 离群值 深度学习 生成语法 编码器 乳腺摄影术 内科学 癌症 操作系统 乳腺癌 医学
作者
Fandong Zhang,Ling Luo,Xinwei Sun,Zhen Zhou,Xiuli Li,Yizhou Yu,Yizhou Wang
标识
DOI:10.1109/cvpr.2019.01286
摘要

Accurate microcalcification (μC) detection is of great importance due to its high proportion in early breast cancers. Most of the previous μC detection methods belong to discriminative models, where classifiers are exploited to distinguish μCs from other backgrounds. However, it is still challenging for these methods to tell the μCs from amounts of normal tissues because they are too tiny (at most 14 pixels). Generative methods can precisely model the normal tissues and regard the abnormal ones as outliers, while they fail to further distinguish the μCs from other anomalies, i.e. vessel calcifications. In this paper, we propose a hybrid approach by taking advantages of both generative and discriminative models. Firstly, a generative model named Anomaly Separation Network (ASN) is used to generate candidate μCs. ASN contains two major components. A deep convolutional encoder-decoder network is built to learn the image reconstruction mapping and a t-test loss function is designed to separate the distributions of the reconstruction residuals of μCs from normal tissues. Secondly, a discriminative model is cascaded to tell the μCs from the false positives. Finally, to verify the effectiveness of our method, we conduct experiments on both public and in-house datasets, which demonstrates that our approach outperforms previous state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
逆旅完成签到,获得积分10
3秒前
Amin发布了新的文献求助10
3秒前
小二郎应助酷酷珠采纳,获得10
3秒前
3秒前
whatever应助嘻嘻采纳,获得20
4秒前
shijiu发布了新的文献求助10
5秒前
胡英俊完成签到,获得积分10
5秒前
flywo发布了新的文献求助10
5秒前
6秒前
Dai完成签到 ,获得积分10
6秒前
wankai发布了新的文献求助10
7秒前
7秒前
7秒前
石勒苏益格完成签到,获得积分10
8秒前
9秒前
ding应助tommy采纳,获得10
10秒前
10秒前
10秒前
CYX完成签到,获得积分20
11秒前
CipherSage应助呃呃采纳,获得10
11秒前
loyal发布了新的文献求助10
11秒前
jerrymomoko发布了新的文献求助10
12秒前
12秒前
wing00024完成签到,获得积分10
12秒前
fm发布了新的文献求助10
13秒前
深情安青应助HJJHJH采纳,获得10
13秒前
科研助手6应助Amin采纳,获得10
13秒前
13秒前
14秒前
hahahaha发布了新的文献求助10
14秒前
111完成签到,获得积分10
15秒前
不懈奋进应助shijiu采纳,获得30
15秒前
小二郎应助研究生采纳,获得10
15秒前
wankai完成签到,获得积分10
15秒前
111完成签到,获得积分10
16秒前
搜集达人应助探险家采纳,获得10
16秒前
天际线发布了新的文献求助10
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793980
求助须知:如何正确求助?哪些是违规求助? 3338876
关于积分的说明 10292700
捐赠科研通 3055364
什么是DOI,文献DOI怎么找? 1676585
邀请新用户注册赠送积分活动 804605
科研通“疑难数据库(出版商)”最低求助积分说明 761998