简编
转录因子
计算生物学
增强子
联营
表观遗传学
细胞
鉴定(生物学)
单细胞分析
生物
电池类型
计算机科学
遗传学
人工智能
基因表达
基因
DNA甲基化
历史
考古
植物
作者
Carmen Bravo González‐Blas,Liesbeth Minnoye,Dafni Papasokrati,Sara Aibar,Gert Hulselmans,Valerie Christiaens,Kristofer Davie,Jasper Wouters,Stein Aerts
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2019-04-08
卷期号:16 (5): 397-400
被引量:402
标识
DOI:10.1038/s41592-019-0367-1
摘要
We present cisTopic, a probabilistic framework used to simultaneously discover coaccessible enhancers and stable cell states from sparse single-cell epigenomics data ( http://github.com/aertslab/cistopic ). Using a compendium of single-cell ATAC-seq datasets from differentiating hematopoietic cells, brain and transcription factor perturbations, we demonstrate that topic modeling can be exploited for robust identification of cell types, enhancers and relevant transcription factors. cisTopic provides insight into the mechanisms underlying regulatory heterogeneity in cell populations. As an unsupervised Bayesian framework, cisTopic classifies regions in scATAC-seq data into regulatory topics, which are used for clustering.
科研通智能强力驱动
Strongly Powered by AbleSci AI