牙龈卟啉单胞菌
氧化应激
牙周炎
脂多糖
线粒体
炎症
免疫学
外周血单个核细胞
病理生理学
医学
生物
内科学
细胞生物学
生物化学
体外
作者
Pedro Bullón,Mario D. Cordero,José L. Quiles,Juan Manuel Morillo,María del Carmen Ramirez-Tortosa,Maurizio Battino
标识
DOI:10.1016/j.freeradbiomed.2011.02.018
摘要
Oxidative stress is one of the factors that could explain the pathophysiological mechanism of inflammatory conditions that occur in cardiovascular disease (CVD) and periodontitis. Such inflammatory response is often evoked by specific bacteria, as the lipopolysaccharide (LPS) of Porphyromonas gingivalis is a key factor in this process. The aim of this research was to study the role of mitochondrial dysfunction in peripheral blood mononuclear cells (PBMCs) from periodontitis patients and to evaluate the influence of LPS on fibroblasts to better understand the pathophysiology of periodontitis and its relationship with CVD. PBMCs from patients showed lower CoQ10 levels and citrate synthase activity, together with high levels of ROS production. LPS-treated fibroblasts provoked increased oxidative stress and mitochondrial dysfunction by a decrease in mitochondrial protein expression, mitochondrial mass, and mitochondrial membrane potential. Our study supports the hypothesis that LPS-mediated mitochondrial dysfunction could be at the origin of oxidative stress in periodontal patients. Abnormal PBMC performance may promote oxidative stress and alter cytokine homeostasis. In conclusion, mitochondrial dysfunction could represent a possible link to understanding the interrelationships between two prominent inflammatory diseases: periodontitis and CVD.
科研通智能强力驱动
Strongly Powered by AbleSci AI