自噬
PI3K/AKT/mTOR通路
蛋白激酶B
细胞凋亡
细胞生物学
核糖核酸
化学
缺氧(环境)
生物
药理学
信号转导
生物化学
基因
有机化学
氧气
作者
Zhouqing Huang,Shengjie Wu,Fanqi Kong,Xueli Cai,Bozhi Ye,Peiren Shan,Weijian Huang
摘要
MicroRNAs and autophagy play critical roles in cardiac hypoxia/reoxygenation (H/R)-induced injury. Here, we investigated the function of miR-21 in regulating autophagy and identified the potential molecular mechanisms involved. To determine the role of miR-21 in regulating autophagy, H9c2 cells were divided into the following six groups: control group, H/R group, (miR-21+ H/R) group, (miR-21-negative control + H/R) group, (BEZ235+ H/R) group and (miR-21+ BEZ235+ H/R) group. The cells underwent hypoxia for 1 hr and reoxygenation for 3 hrs. Cell count kit-8 was used to evaluate cell function and apoptosis was analysed by Western blotting. Western blotting and transmission electron microscopy were used to investigate autophagy. We found that miR-21 expression was down-regulated, and autophagy was remarkably increased in H9c2 cells during H/R injury. Overexpression of miR-21 with a miR-21 precursor significantly inhibited autophagic activity and decreased apoptosis, accompanied by the activation of the AKT/mTOR pathway. In addition, treatment with BEZ235, a novel dual Akt/mTOR inhibitor, resulted in a significant increase in autophagy and apoptosis. However, we found that miR-21-mediated inhibition of apoptosis and autophagy was partly independent of Akt/mTOR activation, as demonstrated in cells treated with both miR-21 and BEZ235. We showed that miR-21 could inhibit H/R-induced autophagy and apoptosis, which may be at least partially mediated by the Akt/mTOR signalling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI