Keyframe Extraction for Human Motion Capture Data Based on Joint Kernel Sparse Representation

运动捕捉 计算机科学 测地线 人工智能 核(代数) 计算机视觉 歧管(流体力学) 非线性系统 数据结构 运动(物理) 数学 数学分析 工程类 物理 组合数学 机械工程 程序设计语言 量子力学
作者
Guiyu Xia,Huaijiang Sun,Xiaoqing Niu,Guoqing Zhang,Lei Feng
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:64 (2): 1589-1599 被引量:38
标识
DOI:10.1109/tie.2016.2610946
摘要

Human motion capture data, which are used to animate animation characters, have been widely used in many areas. To satisfy the high-precision requirement, human motion data are captured with a high frequency (120 frames/s) by a high-precision capture system. However, the high frequency and nonlinear structure make the storage, retrieval, and browsing of motion data challenging problems, which can be solved by keyframe extraction. Current keyframe extraction methods do not properly model two important characteristics of motion data, i.e., sparseness and Riemannian manifold structure. Therefore, we propose a new model called joint kernel sparse representation (SR), which is in marked contrast to all current keyframe extraction methods for motion data and can simultaneously model the sparseness and the Riemannian manifold structure. The proposed model completes the SR in a kernel-induced space with a geodesic exponential kernel, whereas the traditional SR cannot model the nonlinear structure of motion data in the Euclidean space. Meanwhile, because of several important modifications to traditional SR, our model can also exploit the relations between joints and solve two problems, i.e., the unreasonable distribution and redundancy of extracted keyframes, which current methods do not solve. Extensive experiments demonstrate the effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼的宇宙完成签到,获得积分20
1秒前
科研通AI5应助祁瓀采纳,获得10
2秒前
CSC发布了新的文献求助10
2秒前
李爱国应助jjb采纳,获得10
2秒前
小鱼发布了新的文献求助10
2秒前
隐形曼青应助云襄采纳,获得10
3秒前
yuyu发布了新的文献求助10
4秒前
5秒前
赵雪完成签到 ,获得积分10
5秒前
5秒前
skycrygg521完成签到,获得积分10
6秒前
6秒前
kk发布了新的文献求助10
6秒前
Galri完成签到 ,获得积分10
7秒前
科研通AI5应助aaaaa采纳,获得10
7秒前
8秒前
8秒前
chry1sa完成签到,获得积分10
9秒前
风滚草丿发布了新的文献求助10
10秒前
11秒前
11秒前
Hello应助科研通管家采纳,获得10
11秒前
灼灼朗朗发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
zho应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
skycrygg完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
风滚草丿完成签到,获得积分10
16秒前
lierikafei发布了新的文献求助10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975