Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts

催化作用 化学 硝酸盐 亚硝酸盐 无机化学 水溶液 环境化学 有机化学
作者
Xiangchen Huo,Daniel J. Van Hoomissen,Jinyong Liu,Shubham Vyas,Timothy J. Strathmann
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:211: 188-198 被引量:98
标识
DOI:10.1016/j.apcatb.2017.04.045
摘要

Historically, development of catalysts for treatment of nitrate-contaminated water has focused on supported Pd-based catalysts, but high costs of the Pd present a barrier to commercialization. As part of an effort to develop lower cost hydrogenation catalysts for water treatment applications, we investigated catalysts incorporating Ru with lower cost. Pseudo-first-order rate constants and turnover frequencies were determined for carbon- and alumina-supported Ru and demonstrated Ru’s high activity for hydrogenation of nitrate at ambient temperature and H2 pressure. Ex situ gas pretreatment of the catalysts was found to enhance nitrate reduction activity by removing catalyst surface contaminants and exposing highly reducible surface Ru oxides. Ru reduces nitrate selectively to ammonium, and no aqueous nitrite intermediate is observed during reactions. In contrast, reactions initiated with nitrite yield a mixture of two endproducts, with selectivity shifting from ammonium towards N2 at increasing initial aqueous nitrite concentrations. Experimental observation and Density Functional Theory calculations together support a reaction mechanism wherein sequential hydrogenation of nitrate to nitrite and NO is followed by parallel pathways involving the adsorbed NO: (1) sequential hydrogenation to ammonium, and (2) N–N coupling with aqueous nitrite followed by hydrogenation to the detected N2O intermediate and N2 endproduct. These findings open the door to development of alternative catalysts for purifying and recovering nutrients from nitrate-contaminated water sources, and insights into the controlling surface reaction mechanisms can guide rational design efforts aimed at increasing activity and tuning endproduct selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封似狮完成签到,获得积分10
刚刚
万能图书馆应助jianhua采纳,获得10
1秒前
默默完成签到 ,获得积分10
1秒前
老神在在完成签到,获得积分10
2秒前
hahhhhhh2完成签到,获得积分10
3秒前
T_MC郭完成签到,获得积分10
4秒前
Connor完成签到,获得积分10
4秒前
uouuo完成签到 ,获得积分10
5秒前
7秒前
haiwei完成签到 ,获得积分10
9秒前
得一完成签到,获得积分10
11秒前
不是山谷完成签到,获得积分10
11秒前
胡大嘴先生完成签到,获得积分10
12秒前
阳光灿烂发布了新的文献求助10
12秒前
搞学术完成签到,获得积分10
12秒前
sunflowers完成签到 ,获得积分10
12秒前
揽月yue完成签到,获得积分10
12秒前
默默幼南完成签到,获得积分10
13秒前
沉静的绮波完成签到 ,获得积分10
15秒前
17秒前
何钦俊完成签到 ,获得积分10
18秒前
xtlee完成签到,获得积分10
19秒前
wang完成签到,获得积分10
20秒前
燕子发布了新的文献求助10
22秒前
咎青文完成签到,获得积分10
23秒前
ATREE完成签到,获得积分10
24秒前
24秒前
24秒前
zho发布了新的文献求助10
25秒前
震动的小草完成签到,获得积分10
25秒前
26秒前
李故完成签到 ,获得积分10
27秒前
美好雁荷发布了新的文献求助10
28秒前
阳光灿烂完成签到,获得积分0
29秒前
勤劳涵山完成签到,获得积分10
30秒前
优秀不愁发布了新的文献求助10
30秒前
33秒前
科研通AI2S应助Steven采纳,获得10
34秒前
小苏打完成签到,获得积分10
35秒前
tenfarmers完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782835
求助须知:如何正确求助?哪些是违规求助? 3328176
关于积分的说明 10235104
捐赠科研通 3043209
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759030