激子
范德瓦尔斯力
异质结
材料科学
单层
堆积
凝聚态物理
光致发光
价(化学)
分子物理学
结晶学
纳米技术
化学
物理
光电子学
分子
有机化学
作者
Pramoda K. Nayak,Yevhen Horbatenko,Seongjoon Ahn,Gwangwoo Kim,Jae‐Ung Lee,Kyung Yeol,A‐Rang Jang,Hyunseob Lim,Dogyeong Kim,Sunmin Ryu,Hyeonsik Cheong,Noejung Park,Hyeon Suk Shin
出处
期刊:ACS Nano
[American Chemical Society]
日期:2017-03-31
卷期号:11 (4): 4041-4050
被引量:283
标识
DOI:10.1021/acsnano.7b00640
摘要
Interlayer excitons were observed at the heterojunctions in van der Waals heterostructures (vdW HSs). However, it is not known how the excitonic phenomena are affected by the stacking order. Here, we report twist-angle-dependent interlayer excitons in MoSe2/WSe2 vdW HSs based on photoluminescence (PL) and vdW-corrected density functional theory calculations. The PL intensity of the interlayer excitons depends primarily on the twist angle: It is enhanced at coherently stacked angles of 0° and 60° (owing to strong interlayer coupling) but disappears at incoherent intermediate angles. The calculations confirm twist-angle-dependent interlayer coupling: The states at the edges of the valence band exhibit a long tail that stretches over the other layer for coherently stacked angles; however, the states are largely confined in the respective layers for intermediate angles. This interlayer hybridization of the band edge states also correlates with the interlayer separation between MoSe2 and WSe2 layers. Furthermore, the interlayer coupling becomes insignificant, irrespective of twist angles, by the incorporation of a hexagonal boron nitride monolayer between MoSe2 and WSe2.
科研通智能强力驱动
Strongly Powered by AbleSci AI